File size: 24,841 Bytes
8e16878 6dd868b dc50c8f 25f93ce 8e16878 feb4d72 8be2a5a 3fc541a 8be2a5a dc50c8f 112dfd4 a647110 33daad3 4b464a7 dc50c8f 112dfd4 dc50c8f 112dfd4 d0e2a94 dc50c8f 79be1c5 112dfd4 dc50c8f 112dfd4 89f9c2d 112dfd4 37ab671 3fc541a a647110 5aa195d 2bc7b36 5aa195d 8e16878 4055d22 8e16878 8d5bc8b 8e16878 8d5bc8b 8e16878 033ddac 8e16878 8d5bc8b 834264e e1f18e1 716a982 e1f18e1 5aa195d 8d5bc8b 4055d22 8e16878 204cc82 8e16878 1862f3a dc50c8f 1862f3a dc50c8f 1862f3a 8e16878 8b37898 8e16878 3adf5d5 8267387 8a37c3c dd9aae3 8a37c3c 3adf5d5 8267387 8a37c3c 8267387 8a37c3c 8267387 8a37c3c 8267387 8a37c3c 79be1c5 8a37c3c 79be1c5 1259972 79be1c5 1259972 79be1c5 1259972 79be1c5 1259972 8e16878 3adf5d5 8e16878 3343b08 8e16878 9b4ee41 8d5bc8b 9b4ee41 ffcdfee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
import streamlit as st
import cv2
import numpy as np
import pydicom
import tensorflow as tf
import keras
from pydicom.dataset import Dataset, FileDataset
from pydicom.uid import generate_uid
from google.cloud import storage
import os
import io
from PIL import Image
import uuid
import pandas as pd
import tensorflow as tf
from datetime import datetime
from tensorflow import image
from tensorflow.python.keras.models import load_model
from keras.applications.densenet import DenseNet121
from keras.layers import Dense, GlobalAveragePooling2D
from keras.models import Model
from pydicom.pixel_data_handlers.util import apply_voi_lut
# Environment Configuration
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = "./da-kalbe-63ee33c9cdbb.json"
bucket_name = "da-kalbe-ml-result-png"
storage_client = storage.Client()
bucket_result = storage_client.bucket(bucket_name)
bucket_name_load = "da-ml-models"
bucket_load = storage_client.bucket(bucket_name_load)
st.sidebar.title("Configuration")
uploaded_file = st.sidebar.file_uploader("Upload Original Image", type=["png", "jpg", "jpeg", "dcm"])
enhancement_type = st.sidebar.selectbox(
"Enhancement Type",
["Invert", "High Pass Filter", "Unsharp Masking", "Histogram Equalization", "CLAHE"]
)
st.sidebar.title("Detection")
uploaded_detection = st.sidebar.file_uploader("Upload image to detect", type=["png", "jpg", "jpeg", "dcm"])
# enhancement_type = st.sidebar.selectbox(
# "Enhancement Type",
# ["Invert", "High Pass Filter", "Unsharp Masking", "Histogram Equalization", "CLAHE"]
# )
H_detection = 224
W_detection = 224
@st.cache_resource
def load_model_detection():
model_detection = tf.keras.models.load_model("model-detection.h5", compile=False)
model_detection.compile(
loss={
"bbox": "mse",
"class": "sparse_categorical_crossentropy"
},
optimizer=tf.keras.optimizers.Adam(),
metrics={
"bbox": ['mse'],
"class": ['accuracy']
}
)
return model_detection
def preprocess_image(image):
""" Preprocess the image to the required size and normalization. """
image = cv2.resize(image, (W_detection, H_detection))
image = (image - 127.5) / 127.5 # Normalize to [-1, +1]
image = np.expand_dims(image, axis=0).astype(np.float32)
return image
def predict(model_detection, image):
""" Predict bounding box and label for the input image. """
pred_bbox, pred_class = model_detection.predict(image)
pred_label_confidence = np.max(pred_class, axis=1)[0]
pred_label = np.argmax(pred_class, axis=1)[0]
return pred_bbox[0], pred_label, pred_label_confidence
def draw_bbox(image, bbox):
""" Draw bounding box on the image. """
h, w, _ = image.shape
x1, y1, x2, y2 = bbox
x1, y1, x2, y2 = int(x1 * w), int(y1 * h), int(x2 * w), int(y2 * h)
image = cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2)
return image
st.title("AI INTEGRATION FOR CHEST X-RAY")
st.header("IMAGE ENHANCEMENT")
@st.cache_resource
def load_gradcam_model():
model = keras.models.load_model('./model_renamed.h5', compile=False)
return model
# Utility Functions
def upload_to_gcs(image_data: io.BytesIO, filename: str, content_type='application/dicom'):
"""Uploads an image to Google Cloud Storage."""
try:
blob = bucket_result.blob(filename)
blob.upload_from_file(image_data, content_type=content_type)
st.write("File ready to be seen in OHIF Viewer.")
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
def load_dicom_from_gcs(file_name: str = "dicom_00000001_000.dcm"):
# Get the blob object
blob = bucket_load.blob(file_name)
# Download the file as a bytes object
dicom_bytes = blob.download_as_bytes()
# Wrap bytes object into BytesIO (file-like object)
dicom_stream = io.BytesIO(dicom_bytes)
# Load the DICOM file
ds = pydicom.dcmread(dicom_stream)
return ds
def png_to_dicom(image_path: str, image_name: str, dicom: str = None):
if dicom is None:
ds = load_dicom_from_gcs()
else:
ds = load_dicom_from_gcs(dicom)
jpg_image = Image.open(image_path) # Open the image using the path
print("Image Mode:", jpg_image.mode)
if jpg_image.mode == 'L':
np_image = np.array(jpg_image.getdata(), dtype=np.uint8)
ds.Rows = jpg_image.height
ds.Columns = jpg_image.width
ds.PhotometricInterpretation = "MONOCHROME1"
ds.SamplesPerPixel = 1
ds.BitsStored = 8
ds.BitsAllocated = 8
ds.HighBit = 7
ds.PixelRepresentation = 0
ds.PixelData = np_image.tobytes()
ds.save_as(image_name)
elif jpg_image.mode == 'RGBA':
np_image = np.array(jpg_image.getdata(), dtype=np.uint8)[:, :3]
ds.Rows = jpg_image.height
ds.Columns = jpg_image.width
ds.PhotometricInterpretation = "RGB"
ds.SamplesPerPixel = 3
ds.BitsStored = 8
ds.BitsAllocated = 8
ds.HighBit = 7
ds.PixelRepresentation = 0
ds.PixelData = np_image.tobytes()
ds.save_as(image_name)
elif jpg_image.mode == 'RGB':
np_image = np.array(jpg_image.getdata(), dtype=np.uint8)[:, :3] # Remove alpha if present
ds.Rows = jpg_image.height
ds.Columns = jpg_image.width
ds.PhotometricInterpretation = "RGB"
ds.SamplesPerPixel = 3
ds.BitsStored = 8
ds.BitsAllocated = 8
ds.HighBit = 7
ds.PixelRepresentation = 0
ds.PixelData = np_image.tobytes()
ds.save_as(image_name)
else:
raise ValueError("Unsupported image mode:", jpg_image.mode)
return ds
def save_dicom_to_bytes(dicom):
dicom_bytes = io.BytesIO()
dicom.save_as(dicom_bytes)
dicom_bytes.seek(0)
return dicom_bytes
def upload_folder_images(original_image_path, enhanced_image_path):
# Extract the base name of the uploaded image without the extension
folder_name = os.path.splitext(uploaded_file.name)[0]
# Create the folder in Cloud Storage
bucket_result.blob(folder_name + '/').upload_from_string('', content_type='application/x-www-form-urlencoded')
enhancement_name = enhancement_type.split('_')[-1]
# Convert images to DICOM
original_dicom = png_to_dicom(original_image_path, "original_image.dcm")
enhanced_dicom = png_to_dicom(enhanced_image_path, enhancement_name + ".dcm")
# Convert DICOM to byte stream for uploading
original_dicom_bytes = io.BytesIO()
enhanced_dicom_bytes = io.BytesIO()
original_dicom.save_as(original_dicom_bytes)
enhanced_dicom.save_as(enhanced_dicom_bytes)
original_dicom_bytes.seek(0)
enhanced_dicom_bytes.seek(0)
# Upload images to GCS
upload_to_gcs(original_dicom_bytes, folder_name + '/' + 'original_image.dcm', content_type='application/dicom')
upload_to_gcs(enhanced_dicom_bytes, folder_name + '/' + enhancement_name + '.dcm', content_type='application/dicom')
def get_mean_std_per_batch(image_path, H=320, W=320):
sample_data = []
for idx, img in enumerate(df.sample(100)["Image Index"].values):
# path = image_dir + img
sample_data.append(
np.array(keras.utils.load_img(image_path, target_size=(H, W))))
mean = np.mean(sample_data[0])
std = np.std(sample_data[0])
return mean, std
def load_image(img_path, preprocess=True, height=320, width=320):
mean, std = get_mean_std_per_batch(img_path, height, width)
x = keras.utils.load_img(img_path, target_size=(height, width))
x = keras.utils.img_to_array(x)
if preprocess:
x -= mean
x /= std
x = np.expand_dims(x, axis=0)
return x
def grad_cam(input_model, img_array, cls, layer_name):
grad_model = tf.keras.models.Model(
[input_model.inputs],
[input_model.get_layer(layer_name).output, input_model.output]
)
with tf.GradientTape() as tape:
conv_outputs, predictions = grad_model(img_array)
loss = predictions[:, cls]
output = conv_outputs[0]
grads = tape.gradient(loss, conv_outputs)[0]
gate_f = tf.cast(output > 0, 'float32')
gate_r = tf.cast(grads > 0, 'float32')
guided_grads = gate_f * gate_r * grads
weights = tf.reduce_mean(guided_grads, axis=(0, 1))
cam = np.dot(output, weights)
for index, w in enumerate(weights):
cam += w * output[:, :, index]
cam = cv2.resize(cam.numpy(), (320, 320), cv2.INTER_LINEAR)
cam = np.maximum(cam, 0)
cam = cam / cam.max()
return cam
# Compute Grad-CAM
def compute_gradcam(model_gradcam, img_path, layer_name='bn'):
# base_model = keras.applications.DenseNet121(weights = './densenet.hdf5', include_top = False)
# x = base_model.output
# x = keras.layers.GlobalAveragePooling2D()(x)
# predictions = keras.layers.Dense(14, activation = "sigmoid")(x)
# model_gradcam = keras.Model(inputs=base_model.input, outputs=predictions)
# model_gradcam.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),
# loss='sparse_categorical_crossentropy')
# model.load_weights('./pretrained_model.h5')
# Load the original model
# Now use this modified model in your application
model_gradcam = load_gradcam_model()
preprocessed_input = load_image(img_path)
predictions = model_gradcam.predict(preprocessed_input)
original_image = load_image(img_path, preprocess=False)
# Assuming you have 14 classes as previously mentioned
labels = ['Cardiomegaly', 'Emphysema', 'Effusion', 'Hernia', 'Infiltration', 'Mass',
'Nodule', 'Atelectasis', 'Pneumothorax', 'Pleural_Thickening',
'Pneumonia', 'Fibrosis', 'Edema', 'Consolidation']
for i in range(len(labels)):
st.write(f"Generating gradcam for class {labels[i]}")
gradcam = grad_cam(model_gradcam, preprocessed_input, i, layer_name)
gradcam = (gradcam * 255).astype(np.uint8)
gradcam = cv2.applyColorMap(gradcam, cv2.COLORMAP_JET)
gradcam = cv2.addWeighted(gradcam, 0.5, original_image.squeeze().astype(np.uint8), 0.5, 0)
st.image(gradcam, caption=f"{labels[i]}: p={predictions[0][i]:.3f}", use_column_width=True)
def calculate_mse(original_image, enhanced_image):
mse = np.mean((original_image - enhanced_image) ** 2)
return mse
def calculate_psnr(original_image, enhanced_image):
mse = calculate_mse(original_image, enhanced_image)
if mse == 0:
return float('inf')
max_pixel_value = 255.0
psnr = 20 * np.log10(max_pixel_value / np.sqrt(mse))
return psnr
def calculate_maxerr(original_image, enhanced_image):
maxerr = np.max((original_image - enhanced_image) ** 2)
return maxerr
def calculate_l2rat(original_image, enhanced_image):
l2norm_ratio = np.sum(original_image ** 2) / np.sum((original_image - enhanced_image) ** 2)
return l2norm_ratio
def process_image(original_image, enhancement_type, fix_monochrome=True):
if fix_monochrome and original_image.shape[-1] == 3:
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)
image = original_image - np.min(original_image)
image = image / np.max(original_image)
image = (image * 255).astype(np.uint8)
enhanced_image = enhance_image(image, enhancement_type)
mse = calculate_mse(original_image, enhanced_image)
psnr = calculate_psnr(original_image, enhanced_image)
maxerr = calculate_maxerr(original_image, enhanced_image)
l2rat = calculate_l2rat(original_image, enhanced_image)
return enhanced_image, mse, psnr, maxerr, l2rat
def apply_clahe(image):
clahe = cv2.createCLAHE(clipLimit=40.0, tileGridSize=(8, 8))
return clahe.apply(image)
def invert(image):
return cv2.bitwise_not(image)
def hp_filter(image, kernel=None):
if kernel is None:
kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
return cv2.filter2D(image, -1, kernel)
def unsharp_mask(image, radius=5, amount=2):
def usm(image, radius, amount):
blurred = cv2.GaussianBlur(image, (0, 0), radius)
sharpened = cv2.addWeighted(image, 1.0 + amount, blurred, -amount, 0)
return sharpened
return usm(image, radius, amount)
def hist_eq(image):
return cv2.equalizeHist(image)
def enhance_image(image, enhancement_type):
if enhancement_type == "Invert":
return invert(image)
elif enhancement_type == "High Pass Filter":
return hp_filter(image)
elif enhancement_type == "Unsharp Masking":
return unsharp_mask(image)
elif enhancement_type == "Histogram Equalization":
return hist_eq(image)
elif enhancement_type == "CLAHE":
return apply_clahe(image)
else:
raise ValueError(f"Unknown enhancement type: {enhancement_type}")
# Function to add a button to redirect to the URL
def redirect_button(url):
button = st.button('Go to OHIF Viewer')
if button:
st.markdown(f'<meta http-equiv="refresh" content="0;url={url}" />', unsafe_allow_html=True)
###########################################################################################
########################### Bounding Box Function ###########################################
###########################################################################################
# def predict(model_detection, image):
# """ Predict bounding box and label for the input image. """
# pred_bbox, pred_class = model_detection.predict(image)
# pred_label_confidence = np.max(pred_class, axis=1)[0]
# pred_label = np.argmax(pred_class, axis=1)[0]
# return pred_bbox[0], pred_label, pred_label_confidence
# def draw_bbox(image, bbox):
# """ Draw bounding box on the image. """
# h, w, _ = image.shape
# x1, y1, x2, y2 = bbox
# x1, y1, x2, y2 = int(x1 * w), int(y1 * h), int(x2 * w), int(y2 * h)
# image = cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2)
# return image
###########################################################################################
########################### Streamlit Interface ###########################################
###########################################################################################
# File uploader for DICOM files
if uploaded_file is not None:
if hasattr(uploaded_file, 'name'):
file_extension = uploaded_file.name.split(".")[-1] # Get the file extension
if file_extension.lower() == "dcm":
# Process DICOM file
dicom_data = pydicom.dcmread(uploaded_file)
pixel_array = dicom_data.pixel_array
# Process the pixel_array further if needed
# Extract all metadata
metadata = {elem.keyword: elem.value for elem in dicom_data if elem.keyword}
metadata_dict = {str(key): str(value) for key, value in metadata.items()}
df = pd.DataFrame.from_dict(metadata_dict, orient='index', columns=['Value'])
# Display metadata in the left-most column
with st.expander("Lihat Metadata"):
st.write("Metadata:")
st.dataframe(df)
# Read the pixel data
pixel_array = dicom_data.pixel_array
img_array = pixel_array.astype(float)
img_array = (np.maximum(img_array, 0) / img_array.max()) * 255.0 # Normalize to 0-255
img_array = np.uint8(img_array) # Convert to uint8
img = Image.fromarray(img_array)
file_bytes = np.asarray(bytearray(uploaded_detection.read()), dtype=np.uint8)
image = cv2.imdecode(file_bytes, 1)
# st.image(image, caption='Uploaded Image.', use_column_width=True)
col1, col2 = st.columns(2)
# Check the number of dimensions of the image
if img_array.ndim == 3:
n_slices = img_array.shape[0]
if n_slices > 1:
slice_ix = st.sidebar.slider('Slice', 0, n_slices - 1, int(n_slices / 2))
# Display the selected slice
st.image(img_array[slice_ix, :, :], caption=f"Slice {slice_ix}", use_column_width=True)
else:
# If there's only one slice, just display it
st.image(img_array[0, :, :], caption="Single Slice Image", use_column_width=True)
elif img_array.ndim == 2:
# If the image is 2D, just display it
with col1:
st.image(img_array, caption="Original Image", use_column_width=True)
else:
st.error("Unsupported image dimensions")
original_image = img_array
# Example: convert to grayscale if it's a color image
if len(pixel_array.shape) > 2:
pixel_array = pixel_array[:, :, 0] # Take only the first channel
# Perform image enhancement and evaluation on pixel_array
enhanced_image, mse, psnr, maxerr, l2rat = process_image(pixel_array, enhancement_type)
else:
# Process regular image file
original_image = np.array(keras.utils.load_img(uploaded_file, color_mode='rgb' if enhancement_type == "Invert" else 'grayscale'))
# Perform image enhancement and evaluation on original_image
enhanced_image, mse, psnr, maxerr, l2rat = process_image(original_image, enhancement_type)
col1, col2 = st.columns(2)
with col1:
st.image(original_image, caption="Original Image", use_column_width=True)
with col2:
st.image(enhanced_image, caption='Enhanced Image', use_column_width=True)
col1, col2 = st.columns(2)
col3, col4 = st.columns(2)
col1.metric("MSE", round(mse,3))
col2.metric("PSNR", round(psnr,3))
col3.metric("Maxerr", round(maxerr,3))
col4.metric("L2Rat", round(l2rat,3))
# Save enhanced image to a file
enhanced_image_path = "enhanced_image.png"
cv2.imwrite(enhanced_image_path, enhanced_image)
# Save enhanced image to a file
enhanced_image_path = "enhanced_image.png"
cv2.imwrite(enhanced_image_path, enhanced_image)
# Save original image to a file
original_image_path = "original_image.png"
cv2.imwrite(original_image_path, original_image)
# Add the redirect button
col1, col2, col3 = st.columns(3)
with col1:
redirect_button("https://new-ohif-viewer-k7c3gdlxua-et.a.run.app/")
# with col2:
# model_detection = load_model_detection()
# file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
# image = cv2.imdecode(file_bytes, 1)
# st.image(image, caption='Uploaded Image.', use_column_width=True)
# st.button('Detect')
# st.write("Processing...")
# input_image = preprocess_image(image)
# pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image)
# # Updated label mapping based on the dataset
# label_mapping = {
# 0: 'Atelectasis',
# 1: 'Cardiomegaly',
# 2: 'Effusion',
# 3: 'Infiltrate',
# 4: 'Mass',
# 5: 'Nodule',
# 6: 'Pneumonia',
# 7: 'Pneumothorax'
# }
# if pred_label_confidence < 0.2:
# st.write("May not detect a disease.")
# else:
# pred_label_name = label_mapping[pred_label]
# st.write(f"Prediction Label: {pred_label_name}")
# st.write(f"Prediction Bounding Box: {pred_bbox}")
# st.write(f"Prediction Confidence: {pred_label_confidence:.2f}")
# output_image = draw_bbox(image.copy(), pred_bbox)
# st.image(output_image, caption='Detected Image.', use_column_width=True)
# file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
# image = cv2.imdecode(file_bytes, 1)
# st.button('Auto Detect')
# st.write("Processing...")
# input_image = preprocess_image(image)
# pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image)
# # Updated label mapping based on the dataset
# label_mapping = {
# 0: 'Atelectasis',
# 1: 'Cardiomegaly',
# 2: 'Effusion',
# 3: 'Infiltrate',
# 4: 'Mass',
# 5: 'Nodule',
# 6: 'Pneumonia',
# 7: 'Pneumothorax'
# }
# if pred_label_confidence < 0.2:
# st.write("May not detect a disease.")
# else:
# pred_label_name = label_mapping[pred_label]
# st.write(f"Prediction Label: {pred_label_name}")
# st.write(f"Prediction Bounding Box: {pred_bbox}")
# st.write(f"Prediction Confidence: {pred_label_confidence:.2f}")
# output_image = draw_bbox(image.copy(), pred_bbox)
# st.image(output_image, caption='Detected Image.', use_column_width=True)
# if st.button('Auto Detect'):
# st.write("Processing...")
# input_image = image
# # input_image = enhancement_type
# # input_image = cv2.resize(enhanced_image, (W, H)) # Resize the enhanced image to the required input size
# # input_image = (input_image - 127.5) / 127.5 # Normalize to [-1, +1]
# # input_image = np.expand_dims(input_image, axis=0).astype(np.float32) # Expand dimensions and convert to float32
# pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image)
# # Updated label mapping based on the dataset
# label_mapping = {
# 0: 'Atelectasis',
# 1: 'Cardiomegaly',
# 2: 'Effusion',
# 3: 'Infiltrate',
# 4: 'Mass',
# 5: 'Nodule',
# 6: 'Pneumonia',
# 7: 'Pneumothorax'
# }
# if pred_label_confidence < 0.2:
# st.write("May not detect a disease.")
# else:
# pred_label_name = label_mapping[pred_label]
# st.write(f"Prediction Label: {pred_label_name}")
# st.write(f"Prediction Bounding Box: {pred_bbox}")
# st.write(f"Prediction Confidence: {pred_label_confidence:.2f}")
# output_image = draw_bbox(image.copy(), pred_bbox)
# st.image(output_image, caption='Detected Image.', use_column_width=True)
with col2:
if st.button('Generate Grad-CAM'):
model=load_gradcam_model()
# Compute and show Grad-CAM
st.write("Generating Grad-CAM visualizations")
try:
compute_gradcam(model_gradcam, uploaded_file)
except Exception as e:
st.error(f"Error generating Grad-CAM: {e}")
st.header("Chest X-ray Disease Detection")
st.write("Upload a chest X-ray image and click on 'Detect' to find out if there's any disease.")
model_detection = load_model_detection()
# uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png", "dcm"])
if uploaded_detection is not None:
file_bytes = np.asarray(bytearray(uploaded_detection.read()), dtype=np.uint8)
image = cv2.imdecode(file_bytes, 1)
# st.image(image, caption='Uploaded Image.', use_column_width=True)
if st.button('Detect'):
st.write("Processing...")
input_image = preprocess_image(image)
pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image)
# Updated label mapping based on the dataset
label_mapping = {
0: 'Atelectasis',
1: 'Cardiomegaly',
2: 'Effusion',
3: 'Infiltrate',
4: 'Mass',
5: 'Nodule',
6: 'Pneumonia',
7: 'Pneumothorax'
}
if pred_label_confidence < 0.2:
st.write("May not detect a disease.")
else:
pred_label_name = label_mapping[pred_label]
st.write(f"Prediction Label: {pred_label_name}")
st.write(f"Prediction Bounding Box: {pred_bbox}")
st.write(f"Prediction Confidence: {pred_label_confidence:.2f}")
output_image = draw_bbox(image.copy(), pred_bbox)
st.image(output_image, caption='Detected Image.', use_column_width=True) |