Kalbe-x-Bangkit
commited on
Commit
•
112dfd4
1
Parent(s):
5e4c902
#Uncomment detection section.
Browse files
app.py
CHANGED
@@ -33,88 +33,88 @@ enhancement_type = st.sidebar.selectbox(
|
|
33 |
["Invert", "High Pass Filter", "Unsharp Masking", "Histogram Equalization", "CLAHE"]
|
34 |
)
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
#
|
78 |
-
|
79 |
-
#
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
#
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
|
119 |
|
120 |
# Utility Functions
|
|
|
33 |
["Invert", "High Pass Filter", "Unsharp Masking", "Histogram Equalization", "CLAHE"]
|
34 |
)
|
35 |
|
36 |
+
H = 224
|
37 |
+
W = 224
|
38 |
+
|
39 |
+
@st.cache_resource
|
40 |
+
def load_model():
|
41 |
+
model = tf.keras.models.load_model("model-detection.h5", compile=False)
|
42 |
+
model.compile(
|
43 |
+
loss={
|
44 |
+
"bbox": "mse",
|
45 |
+
"class": "sparse_categorical_crossentropy"
|
46 |
+
},
|
47 |
+
optimizer=tf.keras.optimizers.Adam(),
|
48 |
+
metrics={
|
49 |
+
"bbox": ['mse'],
|
50 |
+
"class": ['accuracy']
|
51 |
+
}
|
52 |
+
)
|
53 |
+
return model
|
54 |
+
|
55 |
+
def preprocess_image(image):
|
56 |
+
""" Preprocess the image to the required size and normalization. """
|
57 |
+
image = cv2.resize(image, (W, H))
|
58 |
+
image = (image - 127.5) / 127.5 # Normalize to [-1, +1]
|
59 |
+
image = np.expand_dims(image, axis=0).astype(np.float32)
|
60 |
+
return image
|
61 |
+
|
62 |
+
def predict(model, image):
|
63 |
+
""" Predict bounding box and label for the input image. """
|
64 |
+
pred_bbox, pred_class = model.predict(image)
|
65 |
+
pred_label_confidence = np.max(pred_class, axis=1)[0]
|
66 |
+
pred_label = np.argmax(pred_class, axis=1)[0]
|
67 |
+
return pred_bbox[0], pred_label, pred_label_confidence
|
68 |
+
|
69 |
+
def draw_bbox(image, bbox):
|
70 |
+
""" Draw bounding box on the image. """
|
71 |
+
h, w, _ = image.shape
|
72 |
+
x1, y1, x2, y2 = bbox
|
73 |
+
x1, y1, x2, y2 = int(x1 * w), int(y1 * h), int(x2 * w), int(y2 * h)
|
74 |
+
image = cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
75 |
+
return image
|
76 |
+
|
77 |
+
# st.title("Chest X-ray Disease Detection")
|
78 |
+
|
79 |
+
# st.write("Upload a chest X-ray image and click on 'Detect' to find out if there's any disease.")
|
80 |
+
|
81 |
+
model = load_model()
|
82 |
+
|
83 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
84 |
+
|
85 |
+
if uploaded_file is not None:
|
86 |
+
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
87 |
+
image = cv2.imdecode(file_bytes, 1)
|
88 |
+
|
89 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
90 |
+
|
91 |
+
if st.button('Detect'):
|
92 |
+
st.write("Processing...")
|
93 |
+
input_image = preprocess_image(image)
|
94 |
+
pred_bbox, pred_label, pred_label_confidence = predict(model, input_image)
|
95 |
+
|
96 |
+
# Updated label mapping based on the dataset
|
97 |
+
label_mapping = {
|
98 |
+
0: 'Atelectasis',
|
99 |
+
1: 'Cardiomegaly',
|
100 |
+
2: 'Effusion',
|
101 |
+
3: 'Infiltrate',
|
102 |
+
4: 'Mass',
|
103 |
+
5: 'Nodule',
|
104 |
+
6: 'Pneumonia',
|
105 |
+
7: 'Pneumothorax'
|
106 |
+
}
|
107 |
+
|
108 |
+
if pred_label_confidence < 0.2:
|
109 |
+
st.write("May not detect a disease.")
|
110 |
+
else:
|
111 |
+
pred_label_name = label_mapping[pred_label]
|
112 |
+
st.write(f"Prediction Label: {pred_label_name}")
|
113 |
+
st.write(f"Prediction Bounding Box: {pred_bbox}")
|
114 |
+
st.write(f"Prediction Confidence: {pred_label_confidence:.2f}")
|
115 |
+
|
116 |
+
output_image = draw_bbox(image.copy(), pred_bbox)
|
117 |
+
st.image(output_image, caption='Detected Image.', use_column_width=True)
|
118 |
|
119 |
|
120 |
# Utility Functions
|