Kalbe-x-Bangkit
commited on
Commit
•
ffcdfee
1
Parent(s):
26523a5
Update app.py
Browse files
app.py
CHANGED
@@ -87,48 +87,6 @@ def draw_bbox(image, bbox):
|
|
87 |
|
88 |
st.title("AI INTEGRATION FOR CHEST X-RAY")
|
89 |
|
90 |
-
st.header("Chest X-ray Disease Detection")
|
91 |
-
|
92 |
-
st.write("Upload a chest X-ray image and click on 'Detect' to find out if there's any disease.")
|
93 |
-
|
94 |
-
model_detection = load_model_detection()
|
95 |
-
|
96 |
-
# uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png", "dcm"])
|
97 |
-
|
98 |
-
if uploaded_detection is not None:
|
99 |
-
file_bytes = np.asarray(bytearray(uploaded_detection.read()), dtype=np.uint8)
|
100 |
-
image = cv2.imdecode(file_bytes, 1)
|
101 |
-
|
102 |
-
# st.image(image, caption='Uploaded Image.', use_column_width=True)
|
103 |
-
|
104 |
-
if st.button('Detect'):
|
105 |
-
st.write("Processing...")
|
106 |
-
input_image = preprocess_image(image)
|
107 |
-
pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image)
|
108 |
-
|
109 |
-
# Updated label mapping based on the dataset
|
110 |
-
label_mapping = {
|
111 |
-
0: 'Atelectasis',
|
112 |
-
1: 'Cardiomegaly',
|
113 |
-
2: 'Effusion',
|
114 |
-
3: 'Infiltrate',
|
115 |
-
4: 'Mass',
|
116 |
-
5: 'Nodule',
|
117 |
-
6: 'Pneumonia',
|
118 |
-
7: 'Pneumothorax'
|
119 |
-
}
|
120 |
-
|
121 |
-
if pred_label_confidence < 0.2:
|
122 |
-
st.write("May not detect a disease.")
|
123 |
-
else:
|
124 |
-
pred_label_name = label_mapping[pred_label]
|
125 |
-
st.write(f"Prediction Label: {pred_label_name}")
|
126 |
-
st.write(f"Prediction Bounding Box: {pred_bbox}")
|
127 |
-
st.write(f"Prediction Confidence: {pred_label_confidence:.2f}")
|
128 |
-
|
129 |
-
output_image = draw_bbox(image.copy(), pred_bbox)
|
130 |
-
st.image(output_image, caption='Detected Image.', use_column_width=True)
|
131 |
-
|
132 |
@st.cache_resource
|
133 |
def load_gradcam_model():
|
134 |
model = keras.models.load_model('./model_renamed.h5', compile=False)
|
@@ -629,4 +587,46 @@ if uploaded_file is not None:
|
|
629 |
try:
|
630 |
compute_gradcam(model_gradcam, uploaded_file)
|
631 |
except Exception as e:
|
632 |
-
st.error(f"Error generating Grad-CAM: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
st.title("AI INTEGRATION FOR CHEST X-RAY")
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
@st.cache_resource
|
91 |
def load_gradcam_model():
|
92 |
model = keras.models.load_model('./model_renamed.h5', compile=False)
|
|
|
587 |
try:
|
588 |
compute_gradcam(model_gradcam, uploaded_file)
|
589 |
except Exception as e:
|
590 |
+
st.error(f"Error generating Grad-CAM: {e}")
|
591 |
+
|
592 |
+
st.header("Chest X-ray Disease Detection")
|
593 |
+
|
594 |
+
st.write("Upload a chest X-ray image and click on 'Detect' to find out if there's any disease.")
|
595 |
+
|
596 |
+
model_detection = load_model_detection()
|
597 |
+
|
598 |
+
# uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png", "dcm"])
|
599 |
+
|
600 |
+
if uploaded_detection is not None:
|
601 |
+
file_bytes = np.asarray(bytearray(uploaded_detection.read()), dtype=np.uint8)
|
602 |
+
image = cv2.imdecode(file_bytes, 1)
|
603 |
+
|
604 |
+
# st.image(image, caption='Uploaded Image.', use_column_width=True)
|
605 |
+
|
606 |
+
if st.button('Detect'):
|
607 |
+
st.write("Processing...")
|
608 |
+
input_image = preprocess_image(image)
|
609 |
+
pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image)
|
610 |
+
|
611 |
+
# Updated label mapping based on the dataset
|
612 |
+
label_mapping = {
|
613 |
+
0: 'Atelectasis',
|
614 |
+
1: 'Cardiomegaly',
|
615 |
+
2: 'Effusion',
|
616 |
+
3: 'Infiltrate',
|
617 |
+
4: 'Mass',
|
618 |
+
5: 'Nodule',
|
619 |
+
6: 'Pneumonia',
|
620 |
+
7: 'Pneumothorax'
|
621 |
+
}
|
622 |
+
|
623 |
+
if pred_label_confidence < 0.2:
|
624 |
+
st.write("May not detect a disease.")
|
625 |
+
else:
|
626 |
+
pred_label_name = label_mapping[pred_label]
|
627 |
+
st.write(f"Prediction Label: {pred_label_name}")
|
628 |
+
st.write(f"Prediction Bounding Box: {pred_bbox}")
|
629 |
+
st.write(f"Prediction Confidence: {pred_label_confidence:.2f}")
|
630 |
+
|
631 |
+
output_image = draw_bbox(image.copy(), pred_bbox)
|
632 |
+
st.image(output_image, caption='Detected Image.', use_column_width=True)
|