Join the conversation

Join the community of Machine Learners and AI enthusiasts.

Sign Up

All HF Hub posts

danielhanchen 
posted an update 2 days ago
merterbak 
posted an update about 18 hours ago
fdaudens 
posted an update 2 days ago
view post
Post
3262
I read the 456-page AI Index report so you don't have to (kidding). The wild part? While AI gets ridiculously more accessible, the power gap is actually widening:

1️⃣ The democratization of AI capabilities is accelerating rapidly:
- The gap between open and closed models is basically closed: difference in benchmarks like MMLU and HumanEval shrunk to just 1.7% in 2024
- The cost to run GPT-3.5-level performance dropped 280x in 2 years
- Model size is shrinking while maintaining performance - Phi-3-mini hitting 60%+ MMLU at fraction of parameters of early models like PaLM

2️⃣ But we're seeing concerning divides deepening:
- Geographic: US private investment ($109B) dwarfs everyone else - 12x China's $9.3B
- Research concentration: US and China dominate highly-cited papers (50 and 34 respectively in 2023), while next closest is only 7
- Gender: Major gaps in AI skill penetration rates - US shows 2.39 vs 1.71 male/female ratio

The tech is getting more accessible but the benefits aren't being distributed evenly. Worth thinking about as these tools become more central to the economy.

Give it a read - fascinating portrait of where AI is heading! https://hai-production.s3.amazonaws.com/files/hai_ai_index_report_2025.pdf
·
jasoncorkill 
posted an update about 13 hours ago
view post
Post
769
🔥 Yesterday was a fire day!
We dropped two brand-new datasets capturing Human Preferences for text-to-video and text-to-image generations powered by our own crowdsourcing tool!

Whether you're working on model evaluation, alignment, or fine-tuning, this is for you.

1. Text-to-Video Dataset (Pika 2.2 model):
Rapidata/text-2-video-human-preferences-pika2.2

2. Text-to-Image Dataset (Reve-AI Halfmoon):
Rapidata/Reve-AI-Halfmoon_t2i_human_preference

Let’s train AI on AI-generated content with humans in the loop.
Let’s make generative models that actually get us.
fcakyon 
posted an update 1 day ago
DawnC 
posted an update 1 day ago
view post
Post
1573
New in PawMatchAI🐾 : Turn Your Dog Photos into Art!

I’m excited to introduce a brand-new creative feature — Dog Style Transfer is now live on PawMatchAI!

Just upload your dog’s photo and transform it into 5 artistic styles:
🌸 Japanese Anime
📚 Classic Cartoon
🖼️ Oil Painting
🎨 Watercolor
🌆 Cyberpunk

All powered by Stable Diffusion and enhanced with smart prompt tuning to preserve your dog’s unique traits and breed identity , so the artwork stays true to your furry friend.

Whether you're creating a custom portrait or just having fun, this feature brings your pet photos to life in completely new ways.

And here’s a little secret: although it’s designed with dogs in mind, it actually works on any photo — cats, plush toys, even humans. Feel free to experiment!

Results may not always be perfectly accurate, sometimes your photo might come back looking a little different, or even beyond your imagination. But that’s part of the fun! It’s all about creative surprises and letting the AI do its thing.

Try it now: DawnC/PawMatchAI

If this new feature made you smile, a ❤️ for this space would mean a lot.

#AIArt #StyleTransfer #StableDiffusion #ComputerVision #MachineLearning #DeepLearning
BrigitteTousi 
posted an update 2 days ago
view post
Post
2639
AI agents are transforming how we interact with technology, but how sustainable are they? 🌍

Design choices — like model size and structure — can massively impact energy use and cost. ⚡💰 The key takeaway: smaller, task-specific models can be far more efficient than large, general-purpose ones.

🔑 Open-source models offer greater transparency, allowing us to track energy consumption and make more informed decisions on deployment. 🌱 Open-source = more efficient, eco-friendly, and accountable AI.

Read our latest, led by @sasha with assists from myself + @yjernite 🤗
https://huggingface.co/blog/sasha/ai-agent-sustainability
  • 1 reply
·
jsulz 
posted an update 1 day ago
view post
Post
1706
What does it mean when models share the same bytes?

We've investigated some quants and have seen that a considerable portion of quantizations of the same model share the same bytes and can be deduplicated to save considerable upload time for quantizers on the Hub.

This space where we crack open a repo from @bartowski shows we can get significant dedupe xet-team/quantization-dedup

You can get a sense of why by reading this write-up: https://github.com/bartowski1182/llm-knowledge/blob/main/quantization/quantization.md

But what about finetuned models?

Since going into production the xet-team has migrated hundreds of repositories on the Hub to our storage layer, including classic "pre-Hub" open-source models like FacebookAI/xlm-roberta-large (XLM-R) from FacebookAI

XLM-R, introduced in 2019, set new benchmarks for multilingual NLP by learning shared representations across 100 languages. It was then fine-tuned on English, Spanish, Dutch, and German, generating language-specific derivations for each - check out the paper here Unsupervised Cross-lingual Representation Learning at Scale (1911.02116)

These finetunes share much of the same architecture and layout as XLM-R with similar training methods and goals. It makes sense that they would share bytes, but it's still fascinating to see.

We put together a similar space to explore these models to see where they overlap - check it out for yourself xet-team/finetune-dedupe

The darker each block in the heatmap, the more the bytes are shared. Clicking on a repos blocks shows all other repos that share blocks.
  • 1 reply
·
csabakecskemeti 
posted an update 2 days ago
jsulz 
posted an update 2 days ago
view post
Post
1800
The Llama 4 release - meta-llama/llama-4-67f0c30d9fe03840bc9d0164 - was a big one for the xet-team with every model backed by the storage infrastructure of the future for the Hub.

It's been a wild few days, and especially 🤯 to see every tensor file with a Xet logo next to it instead of LFS.

The attached graph shows requests per second to our content-addressed store (CAS) right as the release went live.

yellow = GETs; dashed line = launch time.

You can definitely tell when the community started downloading 👀

h/t to @rajatarya for the graph, the entire Xet crew to bring us to this point, and special shoutout to Rajat, @port8080 , @brianronan , @seanses , and @znation who made sure the bytes kept flying all weekend ⚡️
  • 1 reply
·