Kalbe-x-Bangkit
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -90,6 +90,7 @@ model = load_model()
|
|
90 |
|
91 |
|
92 |
# Utility Functions
|
|
|
93 |
def upload_to_gcs(image_data: io.BytesIO, filename: str, content_type='application/dicom'):
|
94 |
"""Uploads an image to Google Cloud Storage."""
|
95 |
try:
|
@@ -245,8 +246,17 @@ def grad_cam(input_model, img_array, cls, layer_name):
|
|
245 |
|
246 |
# Compute Grad-CAM
|
247 |
def compute_gradcam(model, img_path, layer_name='bn'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
preprocessed_input = load_image(img_path)
|
249 |
-
predictions =
|
250 |
|
251 |
original_image = load_image(img_path, preprocess=False)
|
252 |
|
@@ -342,10 +352,6 @@ def redirect_button(url):
|
|
342 |
if button:
|
343 |
st.markdown(f'<meta http-equiv="refresh" content="0;url={url}" />', unsafe_allow_html=True)
|
344 |
|
345 |
-
def load_model():
|
346 |
-
model = tf.keras.models.load_model('./model_renamed.h5',custom_objects={'DepthwiseConv2D': tf.keras.layers.DepthwiseConv2D})
|
347 |
-
return model
|
348 |
-
|
349 |
###########################################################################################
|
350 |
########################### Streamlit Interface ###########################################
|
351 |
###########################################################################################
|
|
|
90 |
|
91 |
|
92 |
# Utility Functions
|
93 |
+
|
94 |
def upload_to_gcs(image_data: io.BytesIO, filename: str, content_type='application/dicom'):
|
95 |
"""Uploads an image to Google Cloud Storage."""
|
96 |
try:
|
|
|
246 |
|
247 |
# Compute Grad-CAM
|
248 |
def compute_gradcam(model, img_path, layer_name='bn'):
|
249 |
+
base_model = keras.applications.DenseNet121(weights = './densenet.hdf5', include_top = False)
|
250 |
+
x = base_model.output
|
251 |
+
x = GlobalAveragePooling2D()(x)
|
252 |
+
predictions = Dense(14, activation = "sigmoid")(x)
|
253 |
+
model_gradcam = Model(inputs=base_model.input, outputs=predictions)
|
254 |
+
model_gradcam.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),
|
255 |
+
loss='sparse_categorical_crossentropy')
|
256 |
+
model.load_weights('./pretrained_model.h5')
|
257 |
+
|
258 |
preprocessed_input = load_image(img_path)
|
259 |
+
predictions = model_gradcam.predict(preprocessed_input)
|
260 |
|
261 |
original_image = load_image(img_path, preprocess=False)
|
262 |
|
|
|
352 |
if button:
|
353 |
st.markdown(f'<meta http-equiv="refresh" content="0;url={url}" />', unsafe_allow_html=True)
|
354 |
|
|
|
|
|
|
|
|
|
355 |
###########################################################################################
|
356 |
########################### Streamlit Interface ###########################################
|
357 |
###########################################################################################
|