Kalbe-x-Bangkit commited on
Commit
1259972
1 Parent(s): 1fe7054

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -9
app.py CHANGED
@@ -469,14 +469,9 @@ if uploaded_file is not None:
469
  image = cv2.imdecode(file_bytes, 1)
470
  if st.button('Auto Detect'):
471
  st.write("Processing...")
472
- input_image = image
473
- # input_image = enhancement_type
474
- # input_image = cv2.resize(enhanced_image, (W, H)) # Resize the enhanced image to the required input size
475
- # input_image = (input_image - 127.5) / 127.5 # Normalize to [-1, +1]
476
- # input_image = np.expand_dims(input_image, axis=0).astype(np.float32) # Expand dimensions and convert to float32
477
-
478
  pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image)
479
-
480
  # Updated label mapping based on the dataset
481
  label_mapping = {
482
  0: 'Atelectasis',
@@ -488,7 +483,7 @@ if uploaded_file is not None:
488
  6: 'Pneumonia',
489
  7: 'Pneumothorax'
490
  }
491
-
492
  if pred_label_confidence < 0.2:
493
  st.write("May not detect a disease.")
494
  else:
@@ -496,9 +491,43 @@ if uploaded_file is not None:
496
  st.write(f"Prediction Label: {pred_label_name}")
497
  st.write(f"Prediction Bounding Box: {pred_bbox}")
498
  st.write(f"Prediction Confidence: {pred_label_confidence:.2f}")
499
-
500
  output_image = draw_bbox(image.copy(), pred_bbox)
501
  st.image(output_image, caption='Detected Image.', use_column_width=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
502
 
503
  with col3:
504
  if st.button('Generate Grad-CAM'):
 
469
  image = cv2.imdecode(file_bytes, 1)
470
  if st.button('Auto Detect'):
471
  st.write("Processing...")
472
+ input_image = preprocess_image(image)
 
 
 
 
 
473
  pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image)
474
+
475
  # Updated label mapping based on the dataset
476
  label_mapping = {
477
  0: 'Atelectasis',
 
483
  6: 'Pneumonia',
484
  7: 'Pneumothorax'
485
  }
486
+
487
  if pred_label_confidence < 0.2:
488
  st.write("May not detect a disease.")
489
  else:
 
491
  st.write(f"Prediction Label: {pred_label_name}")
492
  st.write(f"Prediction Bounding Box: {pred_bbox}")
493
  st.write(f"Prediction Confidence: {pred_label_confidence:.2f}")
494
+
495
  output_image = draw_bbox(image.copy(), pred_bbox)
496
  st.image(output_image, caption='Detected Image.', use_column_width=True)
497
+
498
+
499
+ # if st.button('Auto Detect'):
500
+ # st.write("Processing...")
501
+ # input_image = image
502
+ # # input_image = enhancement_type
503
+ # # input_image = cv2.resize(enhanced_image, (W, H)) # Resize the enhanced image to the required input size
504
+ # # input_image = (input_image - 127.5) / 127.5 # Normalize to [-1, +1]
505
+ # # input_image = np.expand_dims(input_image, axis=0).astype(np.float32) # Expand dimensions and convert to float32
506
+
507
+ # pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image)
508
+
509
+ # # Updated label mapping based on the dataset
510
+ # label_mapping = {
511
+ # 0: 'Atelectasis',
512
+ # 1: 'Cardiomegaly',
513
+ # 2: 'Effusion',
514
+ # 3: 'Infiltrate',
515
+ # 4: 'Mass',
516
+ # 5: 'Nodule',
517
+ # 6: 'Pneumonia',
518
+ # 7: 'Pneumothorax'
519
+ # }
520
+
521
+ # if pred_label_confidence < 0.2:
522
+ # st.write("May not detect a disease.")
523
+ # else:
524
+ # pred_label_name = label_mapping[pred_label]
525
+ # st.write(f"Prediction Label: {pred_label_name}")
526
+ # st.write(f"Prediction Bounding Box: {pred_bbox}")
527
+ # st.write(f"Prediction Confidence: {pred_label_confidence:.2f}")
528
+
529
+ # output_image = draw_bbox(image.copy(), pred_bbox)
530
+ # st.image(output_image, caption='Detected Image.', use_column_width=True)
531
 
532
  with col3:
533
  if st.button('Generate Grad-CAM'):