Change model to mode_detection.
Browse files
app.py
CHANGED
@@ -37,7 +37,7 @@ H = 224
|
|
37 |
W = 224
|
38 |
|
39 |
@st.cache_resource
|
40 |
-
def
|
41 |
model = tf.keras.models.load_model("model-detection.h5", compile=False)
|
42 |
model.compile(
|
43 |
loss={
|
@@ -65,7 +65,7 @@ def load_model():
|
|
65 |
|
66 |
# st.write("Upload a chest X-ray image and click on 'Detect' to find out if there's any disease.")
|
67 |
|
68 |
-
|
69 |
|
70 |
# uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
71 |
|
@@ -353,9 +353,9 @@ def redirect_button(url):
|
|
353 |
###########################################################################################
|
354 |
|
355 |
|
356 |
-
def predict(
|
357 |
""" Predict bounding box and label for the input image. """
|
358 |
-
pred_bbox, pred_class =
|
359 |
pred_label_confidence = np.max(pred_class, axis=1)[0]
|
360 |
pred_label = np.argmax(pred_class, axis=1)[0]
|
361 |
return pred_bbox[0], pred_label, pred_label_confidence
|
@@ -472,7 +472,7 @@ if uploaded_file is not None:
|
|
472 |
input_image = cv2.resize(enhanced_image, (W, H)) # Resize the enhanced image to the required input size
|
473 |
input_image = (input_image - 127.5) / 127.5 # Normalize to [-1, +1]
|
474 |
input_image = np.expand_dims(input_image, axis=0).astype(np.float32) # Expand dimensions and convert to float32
|
475 |
-
pred_bbox, pred_label, pred_label_confidence = predict(
|
476 |
|
477 |
# Updated label mapping based on the dataset
|
478 |
label_mapping = {
|
|
|
37 |
W = 224
|
38 |
|
39 |
@st.cache_resource
|
40 |
+
def load_model_detection():
|
41 |
model = tf.keras.models.load_model("model-detection.h5", compile=False)
|
42 |
model.compile(
|
43 |
loss={
|
|
|
65 |
|
66 |
# st.write("Upload a chest X-ray image and click on 'Detect' to find out if there's any disease.")
|
67 |
|
68 |
+
model_detection = load_model_detection()
|
69 |
|
70 |
# uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
71 |
|
|
|
353 |
###########################################################################################
|
354 |
|
355 |
|
356 |
+
def predict(model_detection, image):
|
357 |
""" Predict bounding box and label for the input image. """
|
358 |
+
pred_bbox, pred_class = model_detection.predict(image)
|
359 |
pred_label_confidence = np.max(pred_class, axis=1)[0]
|
360 |
pred_label = np.argmax(pred_class, axis=1)[0]
|
361 |
return pred_bbox[0], pred_label, pred_label_confidence
|
|
|
472 |
input_image = cv2.resize(enhanced_image, (W, H)) # Resize the enhanced image to the required input size
|
473 |
input_image = (input_image - 127.5) / 127.5 # Normalize to [-1, +1]
|
474 |
input_image = np.expand_dims(input_image, axis=0).astype(np.float32) # Expand dimensions and convert to float32
|
475 |
+
pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image)
|
476 |
|
477 |
# Updated label mapping based on the dataset
|
478 |
label_mapping = {
|