Kalbe-x-Bangkit commited on
Commit
716a982
1 Parent(s): e1f18e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -16
app.py CHANGED
@@ -201,12 +201,6 @@ def load_image(img_path, preprocess=True, height=320, width=320):
201
  x = np.expand_dims(x, axis=0)
202
  return x
203
 
204
- def rename_layers(model):
205
- for layer in model.layers:
206
- if '/' in layer.name:
207
- layer._name = layer.name.replace('/', '_')
208
- return model
209
-
210
  def grad_cam(input_model, img_array, cls, layer_name):
211
  grad_model = tf.keras.models.Model(
212
  [input_model.inputs],
@@ -248,16 +242,9 @@ def compute_gradcam(model_gradcam, img_path, layer_name='bn'):
248
  # loss='sparse_categorical_crossentropy')
249
  # model.load_weights('./pretrained_model.h5')
250
  # Load the original model
251
- original_model = keras.models.load_model('./gradcam_model.h5')
252
-
253
- # Rename the layers
254
- modified_model = rename_layers(original_model)
255
-
256
- # Save the modified model
257
- modified_model.save('./modified_gradcam_model.h5')
258
-
259
  # Now use this modified model in your application
260
- model_gradcam = keras.models.load_model('./modified_gradcam_model.h5')
261
 
262
  preprocessed_input = load_image(img_path)
263
  predictions = model_gradcam.predict(preprocessed_input)
@@ -509,7 +496,7 @@ if uploaded_file is not None:
509
  with col3:
510
  if st.button('Generate Grad-CAM'):
511
  st.write("Loading model...")
512
- model_gradcam = keras.models.load_model('./modified_gradcam_model.h5')
513
  # Compute and show Grad-CAM
514
  st.write("Generating Grad-CAM visualizations")
515
  try:
 
201
  x = np.expand_dims(x, axis=0)
202
  return x
203
 
 
 
 
 
 
 
204
  def grad_cam(input_model, img_array, cls, layer_name):
205
  grad_model = tf.keras.models.Model(
206
  [input_model.inputs],
 
242
  # loss='sparse_categorical_crossentropy')
243
  # model.load_weights('./pretrained_model.h5')
244
  # Load the original model
245
+
 
 
 
 
 
 
 
246
  # Now use this modified model in your application
247
+ model_gradcam = keras.models.load_model('./model_renamed.h5')
248
 
249
  preprocessed_input = load_image(img_path)
250
  predictions = model_gradcam.predict(preprocessed_input)
 
496
  with col3:
497
  if st.button('Generate Grad-CAM'):
498
  st.write("Loading model...")
499
+ model_gradcam = keras.models.load_model('./model_renamed.h5')
500
  # Compute and show Grad-CAM
501
  st.write("Generating Grad-CAM visualizations")
502
  try: