Kalbe-x-Bangkit commited on
Commit
e1f18e1
1 Parent(s): 329fbf8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -2
app.py CHANGED
@@ -201,6 +201,12 @@ def load_image(img_path, preprocess=True, height=320, width=320):
201
  x = np.expand_dims(x, axis=0)
202
  return x
203
 
 
 
 
 
 
 
204
  def grad_cam(input_model, img_array, cls, layer_name):
205
  grad_model = tf.keras.models.Model(
206
  [input_model.inputs],
@@ -241,7 +247,17 @@ def compute_gradcam(model_gradcam, img_path, layer_name='bn'):
241
  # model_gradcam.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),
242
  # loss='sparse_categorical_crossentropy')
243
  # model.load_weights('./pretrained_model.h5')
244
- model_gradcam = keras.models.load_model('./model_renamed.h5')
 
 
 
 
 
 
 
 
 
 
245
 
246
  preprocessed_input = load_image(img_path)
247
  predictions = model_gradcam.predict(preprocessed_input)
@@ -493,7 +509,7 @@ if uploaded_file is not None:
493
  with col3:
494
  if st.button('Generate Grad-CAM'):
495
  st.write("Loading model...")
496
- model_gradcam = keras.models.load_model('./gradcam_model.h5')
497
  # Compute and show Grad-CAM
498
  st.write("Generating Grad-CAM visualizations")
499
  try:
 
201
  x = np.expand_dims(x, axis=0)
202
  return x
203
 
204
+ def rename_layers(model):
205
+ for layer in model.layers:
206
+ if '/' in layer.name:
207
+ layer._name = layer.name.replace('/', '_')
208
+ return model
209
+
210
  def grad_cam(input_model, img_array, cls, layer_name):
211
  grad_model = tf.keras.models.Model(
212
  [input_model.inputs],
 
247
  # model_gradcam.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),
248
  # loss='sparse_categorical_crossentropy')
249
  # model.load_weights('./pretrained_model.h5')
250
+ # Load the original model
251
+ original_model = keras.models.load_model('./gradcam_model.h5')
252
+
253
+ # Rename the layers
254
+ modified_model = rename_layers(original_model)
255
+
256
+ # Save the modified model
257
+ modified_model.save('./modified_gradcam_model.h5')
258
+
259
+ # Now use this modified model in your application
260
+ model_gradcam = keras.models.load_model('./modified_gradcam_model.h5')
261
 
262
  preprocessed_input = load_image(img_path)
263
  predictions = model_gradcam.predict(preprocessed_input)
 
509
  with col3:
510
  if st.button('Generate Grad-CAM'):
511
  st.write("Loading model...")
512
+ model_gradcam = keras.models.load_model('./modified_gradcam_model.h5')
513
  # Compute and show Grad-CAM
514
  st.write("Generating Grad-CAM visualizations")
515
  try: