Kalbe-x-Bangkit
commited on
Commit
•
033ddac
1
Parent(s):
ae4c42e
Update app.py
Browse files
app.py
CHANGED
@@ -29,7 +29,7 @@ bucket_load = storage_client.bucket(bucket_name_load)
|
|
29 |
model_path = os.path.join("model.h5")
|
30 |
model = tf.keras.models.load_model(model_path)
|
31 |
|
32 |
-
H, W =
|
33 |
|
34 |
test_samples_folder = 'object_detection_test_samples'
|
35 |
|
@@ -51,7 +51,7 @@ df = pd.read_excel('BBox_List_2017.xlsx')
|
|
51 |
labels_dict = dict(zip(df['Image Index'], df['Finding Label']))
|
52 |
|
53 |
def predict(image):
|
54 |
-
H, W =
|
55 |
|
56 |
image_resized = cv2.resize(image, (W, H))
|
57 |
image_normalized = (image_resized - 127.5) / 127.5
|
@@ -181,7 +181,7 @@ def upload_folder_images(original_image_path, enhanced_image_path):
|
|
181 |
upload_to_gcs(enhanced_dicom_bytes, folder_name + '/' + enhancement_name + '.dcm', content_type='application/dicom')
|
182 |
|
183 |
|
184 |
-
def get_mean_std_per_batch(image_path, df, H=
|
185 |
sample_data = []
|
186 |
for idx, img in enumerate(df.sample(100)["Image Index"].values):
|
187 |
# path = image_dir + img
|
@@ -192,7 +192,7 @@ def get_mean_std_per_batch(image_path, df, H=512, W=512):
|
|
192 |
std = np.std(sample_data[0])
|
193 |
return mean, std
|
194 |
|
195 |
-
def load_image(img_path, preprocess=True, height=
|
196 |
mean, std = get_mean_std_per_batch(img_path, df, height, width)
|
197 |
x = keras.utils.load_img(img_path, target_size=(height, width))
|
198 |
x = keras.utils.img_to_array(x)
|
@@ -225,7 +225,7 @@ def grad_cam(input_model, img_array, cls, layer_name):
|
|
225 |
for index, w in enumerate(weights):
|
226 |
cam += w * output[:, :, index]
|
227 |
|
228 |
-
cam = cv2.resize(cam.numpy(), (
|
229 |
cam = np.maximum(cam, 0)
|
230 |
cam = cam / cam.max()
|
231 |
|
|
|
29 |
model_path = os.path.join("model.h5")
|
30 |
model = tf.keras.models.load_model(model_path)
|
31 |
|
32 |
+
H, W = 320, 320
|
33 |
|
34 |
test_samples_folder = 'object_detection_test_samples'
|
35 |
|
|
|
51 |
labels_dict = dict(zip(df['Image Index'], df['Finding Label']))
|
52 |
|
53 |
def predict(image):
|
54 |
+
H, W = 320, 320
|
55 |
|
56 |
image_resized = cv2.resize(image, (W, H))
|
57 |
image_normalized = (image_resized - 127.5) / 127.5
|
|
|
181 |
upload_to_gcs(enhanced_dicom_bytes, folder_name + '/' + enhancement_name + '.dcm', content_type='application/dicom')
|
182 |
|
183 |
|
184 |
+
def get_mean_std_per_batch(image_path, df, H=320, W=320):
|
185 |
sample_data = []
|
186 |
for idx, img in enumerate(df.sample(100)["Image Index"].values):
|
187 |
# path = image_dir + img
|
|
|
192 |
std = np.std(sample_data[0])
|
193 |
return mean, std
|
194 |
|
195 |
+
def load_image(img_path, preprocess=True, height=320, width=320):
|
196 |
mean, std = get_mean_std_per_batch(img_path, df, height, width)
|
197 |
x = keras.utils.load_img(img_path, target_size=(height, width))
|
198 |
x = keras.utils.img_to_array(x)
|
|
|
225 |
for index, w in enumerate(weights):
|
226 |
cam += w * output[:, :, index]
|
227 |
|
228 |
+
cam = cv2.resize(cam.numpy(), (320, 320), cv2.INTER_LINEAR)
|
229 |
cam = np.maximum(cam, 0)
|
230 |
cam = cam / cam.max()
|
231 |
|