Kalbe-x-Bangkit
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -74,7 +74,25 @@ model = load_model()
|
|
74 |
# image = cv2.imdecode(file_bytes, 1)
|
75 |
|
76 |
# st.image(image, caption='Uploaded Image.', use_column_width=True)
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
# Utility Functions
|
80 |
|
@@ -244,7 +262,7 @@ def compute_gradcam(model_gradcam, img_path, layer_name='bn'):
|
|
244 |
# Load the original model
|
245 |
|
246 |
# Now use this modified model in your application
|
247 |
-
model_gradcam =
|
248 |
|
249 |
preprocessed_input = load_image(img_path)
|
250 |
predictions = model_gradcam.predict(preprocessed_input)
|
@@ -496,7 +514,7 @@ if uploaded_file is not None:
|
|
496 |
with col3:
|
497 |
if st.button('Generate Grad-CAM'):
|
498 |
st.write("Loading model...")
|
499 |
-
model_gradcam =
|
500 |
# Compute and show Grad-CAM
|
501 |
st.write("Generating Grad-CAM visualizations")
|
502 |
try:
|
|
|
74 |
# image = cv2.imdecode(file_bytes, 1)
|
75 |
|
76 |
# st.image(image, caption='Uploaded Image.', use_column_width=True)
|
77 |
+
|
78 |
+
|
79 |
+
@st.cache_resource
|
80 |
+
def load_gradcam_model():
|
81 |
+
model = keras.models.load_model('./model_renamed.h5', compile=False)
|
82 |
+
model.compile(
|
83 |
+
loss={
|
84 |
+
"bbox": "mse",
|
85 |
+
"class": "sparse_categorical_crossentropy"
|
86 |
+
},
|
87 |
+
optimizer=tf.keras.optimizers.Adam(),
|
88 |
+
metrics={
|
89 |
+
"bbox": ['mse'],
|
90 |
+
"class": ['accuracy']
|
91 |
+
}
|
92 |
+
)
|
93 |
+
return model
|
94 |
+
|
95 |
+
model_gradcam = load_gradcam_model()
|
96 |
|
97 |
# Utility Functions
|
98 |
|
|
|
262 |
# Load the original model
|
263 |
|
264 |
# Now use this modified model in your application
|
265 |
+
model_gradcam = load_gradcam_model()
|
266 |
|
267 |
preprocessed_input = load_image(img_path)
|
268 |
predictions = model_gradcam.predict(preprocessed_input)
|
|
|
514 |
with col3:
|
515 |
if st.button('Generate Grad-CAM'):
|
516 |
st.write("Loading model...")
|
517 |
+
model_gradcam = load_gradcam_model()
|
518 |
# Compute and show Grad-CAM
|
519 |
st.write("Generating Grad-CAM visualizations")
|
520 |
try:
|