Kalbe-x-Bangkit commited on
Commit
5aa195d
·
verified ·
1 Parent(s): 716a982

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -3
app.py CHANGED
@@ -74,7 +74,25 @@ model = load_model()
74
  # image = cv2.imdecode(file_bytes, 1)
75
 
76
  # st.image(image, caption='Uploaded Image.', use_column_width=True)
77
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
  # Utility Functions
80
 
@@ -244,7 +262,7 @@ def compute_gradcam(model_gradcam, img_path, layer_name='bn'):
244
  # Load the original model
245
 
246
  # Now use this modified model in your application
247
- model_gradcam = keras.models.load_model('./model_renamed.h5')
248
 
249
  preprocessed_input = load_image(img_path)
250
  predictions = model_gradcam.predict(preprocessed_input)
@@ -496,7 +514,7 @@ if uploaded_file is not None:
496
  with col3:
497
  if st.button('Generate Grad-CAM'):
498
  st.write("Loading model...")
499
- model_gradcam = keras.models.load_model('./model_renamed.h5')
500
  # Compute and show Grad-CAM
501
  st.write("Generating Grad-CAM visualizations")
502
  try:
 
74
  # image = cv2.imdecode(file_bytes, 1)
75
 
76
  # st.image(image, caption='Uploaded Image.', use_column_width=True)
77
+
78
+
79
+ @st.cache_resource
80
+ def load_gradcam_model():
81
+ model = keras.models.load_model('./model_renamed.h5', compile=False)
82
+ model.compile(
83
+ loss={
84
+ "bbox": "mse",
85
+ "class": "sparse_categorical_crossentropy"
86
+ },
87
+ optimizer=tf.keras.optimizers.Adam(),
88
+ metrics={
89
+ "bbox": ['mse'],
90
+ "class": ['accuracy']
91
+ }
92
+ )
93
+ return model
94
+
95
+ model_gradcam = load_gradcam_model()
96
 
97
  # Utility Functions
98
 
 
262
  # Load the original model
263
 
264
  # Now use this modified model in your application
265
+ model_gradcam = load_gradcam_model()
266
 
267
  preprocessed_input = load_image(img_path)
268
  predictions = model_gradcam.predict(preprocessed_input)
 
514
  with col3:
515
  if st.button('Generate Grad-CAM'):
516
  st.write("Loading model...")
517
+ model_gradcam = load_gradcam_model()
518
  # Compute and show Grad-CAM
519
  st.write("Generating Grad-CAM visualizations")
520
  try: