Spaces:
Running
on
Zero
Running
on
Zero
File size: 70,498 Bytes
86da6bf 4fa11ec b74468d 6dceac4 b74468d 6dceac4 645651e 5c0c30a 6dceac4 645651e 976cf1e 6dceac4 86da6bf 68b0288 2b98806 7a2c457 2b98806 07462e7 6573567 2b98806 be4c20b 86da6bf 2b98806 7a2c457 7645f3c 7a2c457 8898a47 2b98806 c320745 68b0288 c320745 86da6bf 5ca0c5b 1075d8a edc0dc6 86da6bf 7311cdd 86da6bf 07462e7 2b98806 68b0288 2b98806 86da6bf 5ca0c5b 7a2c457 2b98806 edc0dc6 07462e7 86da6bf 7311cdd 5ca0c5b 2b98806 51d0dee 9e43ce3 51d0dee 9e43ce3 2b98806 9e43ce3 2b98806 88c1ef1 2b98806 5ca0c5b e85b6ae 5ca0c5b 9e43ce3 bce60e0 9e43ce3 9cd819b bce60e0 9cd819b 5ca0c5b f1aaf40 94eb803 5ca0c5b edc0dc6 7a2c457 2b98806 a48bd1b 2b98806 c320745 2b98806 c320745 86da6bf 88c1ef1 5ca0c5b 044c4c8 5ca0c5b 4fa11ec 2b98806 edc0dc6 94eb803 b74468d 94eb803 e9af887 68b0288 2b98806 86da6bf 2b98806 68b0288 7a2c457 68b0288 7a2c457 07462e7 94eb803 4fa11ec 94eb803 edc0dc6 07462e7 5ca0c5b 6706a30 5ca0c5b 6706a30 5ca0c5b 7a2c457 5ca0c5b 88c1ef1 6dceac4 88c1ef1 5ca0c5b 88c1ef1 88feeb8 88c1ef1 88feeb8 28c6e21 1efccb8 88c1ef1 5ca0c5b 94eb803 b74468d 94eb803 4fa11ec 5ca0c5b 2b98806 86da6bf 560d63b 6706a30 560d63b 6706a30 560d63b 6706a30 560d63b 94eb803 560d63b 8c6fc00 6dceac4 24c1fd0 86da6bf 8c6fc00 86da6bf d245991 86da6bf 1efccb8 86da6bf 6dceac4 86da6bf 1efccb8 68b0288 5ca0c5b 7a2c457 b74468d 7a2c457 b74468d 94eb803 4fa11ec 560d63b 8c6fc00 560d63b 4fa11ec 8c6fc00 86da6bf 88c1ef1 5ca0c5b 044c4c8 8c6fc00 7a2c457 8c6fc00 5c1d3a1 40e33a1 8c6fc00 5ca0c5b 86da6bf 7a2c457 94eb803 da6c997 94eb803 7a2c457 2b5e956 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 94eb803 2b5e956 560d63b 4fa11ec 560d63b 4fa11ec 8c6fc00 86da6bf 88c1ef1 5ca0c5b 044c4c8 5ca0c5b 4fa11ec 8c6fc00 e85b6ae 1efccb8 4fa11ec 1efccb8 8c6fc00 f1aaf40 7a2c457 812ad0d e85b6ae 7a2c457 f1aaf40 7a2c457 507aec2 7a2c457 f1aaf40 7a2c457 8c6fc00 d245991 7a2c457 d245991 7a2c457 d245991 7a2c457 68b0288 86da6bf 88c1ef1 5ca0c5b 9e43ce3 88c1ef1 5ca0c5b 9e43ce3 5ca0c5b e85b6ae 9e43ce3 5ca0c5b b74468d 88c1ef1 9e43ce3 b74468d 9e43ce3 7a2c457 8d1d2de b74468d 9e43ce3 7a2c457 6573567 7a2c457 9e43ce3 7a2c457 9e43ce3 86da6bf 5ca0c5b 88c1ef1 86da6bf 8898a47 7a2c457 4d58f0c 7a2c457 f5de82f 7a2c457 86da6bf 9e43ce3 88c1ef1 7a2c457 9e43ce3 7a2c457 9e43ce3 88c1ef1 e76863d 88c1ef1 4fa11ec 7311cdd 044c4c8 e9af887 4fa11ec 44410c1 4fa11ec 88c1ef1 5c67556 2b5e956 044c4c8 2b5e956 976cf1e 2b5e956 4fa11ec 7a2c457 f5de82f 5c67556 7a2c457 f5de82f 5c67556 560d63b 4fa11ec 560d63b 5ca0c5b 7311cdd 5c67556 88c1ef1 5ca0c5b 88c1ef1 6573567 88c1ef1 976cf1e 6573567 88c1ef1 68b0288 88c1ef1 560d63b 2b98806 07db945 00dc973 07db945 5ca0c5b 88c1ef1 9e43ce3 88c1ef1 560d63b 88c1ef1 2b5e956 4fa11ec 2b5e956 88c1ef1 560d63b 4fa11ec 88c1ef1 9237b56 88c1ef1 e85b6ae a29b195 88c1ef1 507aec2 88c1ef1 a29b195 88c1ef1 9e43ce3 88c1ef1 560d63b 88c1ef1 4fa11ec 88c1ef1 560d63b 4fa11ec 88c1ef1 9237b56 88c1ef1 5ca0c5b 812ad0d 83bc547 812ad0d 83bc547 812ad0d 83bc547 5ca0c5b 8d1d2de 5ca0c5b 8d1d2de 5ca0c5b 6dceac4 5ca0c5b 044c4c8 5ca0c5b 560d63b 5ca0c5b 044c4c8 5ca0c5b 8d1d2de 4fa11ec 5ca0c5b 4fa11ec 560d63b 4fa11ec 5ca0c5b 044c4c8 5ca0c5b 9237b56 5ca0c5b e85b6ae 5ca0c5b 9e43ce3 5ca0c5b e85b6ae 5ca0c5b 560d63b 5ca0c5b 9e43ce3 5ca0c5b 4fa11ec 5ca0c5b 4fa11ec 560d63b 4fa11ec 5ca0c5b 9237b56 5ca0c5b e85b6ae 7645f3c 7311cdd 7645f3c 7311cdd 4fa11ec a39ec0a 4fa11ec 83bc547 4fa11ec 83bc547 4fa11ec 83bc547 4fa11ec 62031d2 b74468d 62031d2 b74468d 62031d2 b74468d 62031d2 b74468d 62031d2 560d63b 62031d2 b74468d 62031d2 b74468d 83bc547 b74468d 62031d2 b74468d 4fa11ec 62031d2 560d63b 4fa11ec 62031d2 b74468d 62031d2 9e43ce3 7a2c457 d73ecb9 83bc547 9e43ce3 7a2c457 560d63b 7a2c457 4fa11ec 7a2c457 560d63b 4fa11ec 7a2c457 e85b6ae 7a2c457 e85b6ae 9e43ce3 7a2c457 e85b6ae d73ecb9 7a2c457 d73ecb9 7a2c457 d73ecb9 e85b6ae 9e43ce3 d73ecb9 e85b6ae d73ecb9 94eb803 62031d2 83bc547 8d4b10a 935e622 bee43e5 8d4b10a bee43e5 d73ecb9 c15986b d8f9231 645651e b583aba 7311cdd b583aba 6573567 7311cdd 6573567 645651e 2b5e956 b74468d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 |
# Author: Huzheng Yang
# %%
import copy
from io import BytesIO
import os
from matplotlib import pyplot as plt
USE_HUGGINGFACE_ZEROGPU = os.getenv("USE_HUGGINGFACE_ZEROGPU", "False").lower() in ["true", "1", "yes"]
DOWNLOAD_ALL_MODELS_DATASETS = os.getenv("DOWNLOAD_ALL_MODELS_DATASETS", "False").lower() in ["true", "1", "yes"]
if USE_HUGGINGFACE_ZEROGPU: # huggingface ZeroGPU, dynamic GPU allocation
try:
import spaces
except:
USE_HUGGINGFACE_ZEROGPU = False
if USE_HUGGINGFACE_ZEROGPU:
BATCH_SIZE = 1
else: # run on local machine
BATCH_SIZE = 1
import gradio as gr
import torch
import torch.nn.functional as F
from PIL import Image
import numpy as np
import time
import threading
from ncut_pytorch.backbone import extract_features, load_model
from ncut_pytorch.backbone import MODEL_DICT, LAYER_DICT, RES_DICT
from ncut_pytorch import NCUT, eigenvector_to_rgb
DATASET_TUPS = [
# (name, num_classes)
('UCSC-VLAA/Recap-COCO-30K', None),
('nateraw/pascal-voc-2012', None),
('johnowhitaker/imagenette2-320', 10),
('jainr3/diffusiondb-pixelart', None),
('nielsr/CelebA-faces', None),
('JapanDegitalMaterial/Places_in_Japan', None),
('Borismile/Anime-dataset', None),
('Multimodal-Fatima/CUB_train', 200),
('mrm8488/ImageNet1K-val', 1000),
("trashsock/hands-images", 8),
]
DATASET_NAMES = [tup[0] for tup in DATASET_TUPS]
DATASET_CLASSES = [tup[1] for tup in DATASET_TUPS]
from datasets import load_dataset
def download_all_datasets():
for name in DATASET_NAMES:
print(f"Downloading {name}")
try:
load_dataset(name, trust_remote_code=True)
except Exception as e:
print(f"Error downloading {name}: {e}")
def compute_ncut(
features,
num_eig=100,
num_sample_ncut=10000,
affinity_focal_gamma=0.3,
knn_ncut=10,
knn_tsne=10,
embedding_method="UMAP",
num_sample_tsne=300,
perplexity=150,
n_neighbors=150,
min_dist=0.1,
sampling_method="fps",
metric="cosine",
):
logging_str = ""
num_nodes = np.prod(features.shape[:-1])
if num_nodes / 2 < num_eig:
# raise gr.Error("Number of eigenvectors should be less than half the number of nodes.")
gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.")
num_eig = num_nodes // 2 - 1
logging_str += f"Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.\n"
start = time.time()
eigvecs, eigvals = NCUT(
num_eig=num_eig,
num_sample=num_sample_ncut,
device="cuda" if torch.cuda.is_available() else "cpu",
affinity_focal_gamma=affinity_focal_gamma,
knn=knn_ncut,
sample_method=sampling_method,
distance=metric,
normalize_features=False,
).fit_transform(features.reshape(-1, features.shape[-1]))
# print(f"NCUT time: {time.time() - start:.2f}s")
logging_str += f"NCUT time: {time.time() - start:.2f}s\n"
start = time.time()
_, rgb = eigenvector_to_rgb(
eigvecs,
method=embedding_method,
num_sample=num_sample_tsne,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_distance=min_dist,
knn=knn_tsne,
device="cuda" if torch.cuda.is_available() else "cpu",
)
logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n"
rgb = rgb.reshape(features.shape[:-1] + (3,))
return rgb, logging_str, eigvecs
def dont_use_too_much_green(image_rgb):
# make sure the foval 40% of the image is red leading
x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7)
y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7)
sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2))
sorted_indices = sum_values.argsort(descending=True)
image_rgb = image_rgb[:, :, :, sorted_indices]
return image_rgb
def to_pil_images(images, target_size=256):
size = images[0].shape[1]
multiplier = target_size // size
res = int(size * multiplier)
return [
Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((res, res), Image.Resampling.NEAREST)
for image in images
]
def pil_images_to_video(images, output_path, fps=5):
# from pil images to numpy
images = [np.array(image) for image in images]
# print("Saving video to", output_path)
import cv2
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
height, width, _ = images[0].shape
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
for image in images:
out.write(cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
out.release()
return output_path
# save up to 100 videos in disk
class VideoCache:
def __init__(self, max_videos=100):
self.max_videos = max_videos
self.videos = {}
def add_video(self, video_path):
if len(self.videos) >= self.max_videos:
pop_path = self.videos.popitem()[0]
try:
os.remove(pop_path)
except:
pass
self.videos[video_path] = video_path
def get_video(self, video_path):
return self.videos.get(video_path, None)
video_cache = VideoCache()
def get_random_path(length=10):
import random
import string
name = ''.join(random.choices(string.ascii_lowercase + string.digits, k=length))
path = f'/tmp/{name}.mp4'
return path
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/guitar_ego.jpg', './images/image_5.jpg']
default_outputs = ['./images/image-1.webp', './images/image-2.webp', './images/image-3.webp', './images/image-4.webp', './images/image-5.webp']
# default_outputs_independent = ['./images/image-6.webp', './images/image-7.webp', './images/image-8.webp', './images/image-9.webp', './images/image-10.webp']
default_outputs_independent = []
downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg']
downscaled_outputs = default_outputs
example_items = downscaled_images[:3] + downscaled_outputs[:3]
def run_alignedthreemodelattnnodes(images, model, batch_size=16):
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
if use_cuda:
model = model.to(device)
chunked_idxs = torch.split(torch.arange(images.shape[0]), batch_size)
outputs = []
for idxs in chunked_idxs:
inp = images[idxs]
if use_cuda:
inp = inp.to(device)
out = model(inp)
# normalize before save
out = F.normalize(out, dim=-1)
outputs.append(out.cpu().float())
outputs = torch.cat(outputs, dim=0)
return outputs
def ncut_run(
model,
images,
model_name="SAM(sam_vit_b)",
layer=-1,
num_eig=100,
node_type="block",
affinity_focal_gamma=0.3,
num_sample_ncut=10000,
knn_ncut=10,
embedding_method="UMAP",
num_sample_tsne=1000,
knn_tsne=10,
perplexity=500,
n_neighbors=500,
min_dist=0.1,
sampling_method="fps",
old_school_ncut=False,
recursion=False,
recursion_l2_n_eigs=50,
recursion_l3_n_eigs=20,
recursion_metric="euclidean",
recursion_l1_gamma=0.5,
recursion_l2_gamma=0.5,
recursion_l3_gamma=0.5,
video_output=False,
is_lisa=False,
lisa_prompt1="",
lisa_prompt2="",
lisa_prompt3="",
):
logging_str = ""
if "AlignedThreeModelAttnNodes" == model_name:
# dirty patch for the alignedcut paper
resolution = (224, 224)
else:
resolution = RES_DICT[model_name]
logging_str += f"Resolution: {resolution}\n"
if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
# raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.")
logging_str += f"Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.\n"
perplexity = num_sample_tsne - 1
n_neighbors = num_sample_tsne - 1
if torch.cuda.is_available():
torch.cuda.empty_cache()
node_type = node_type.split(":")[0].strip()
start = time.time()
if "AlignedThreeModelAttnNodes" == model_name:
# dirty patch for the alignedcut paper
features = run_alignedthreemodelattnnodes(images, model, batch_size=BATCH_SIZE)
elif is_lisa == True:
# dirty patch for the LISA model
features = []
with torch.no_grad():
model = model.cuda()
images = images.cuda()
lisa_prompts = [lisa_prompt1, lisa_prompt2, lisa_prompt3]
for prompt in lisa_prompts:
import bleach
prompt = bleach.clean(prompt)
prompt = prompt.strip()
# print(prompt)
# # copy the sting to a new string
# copy_s = copy.copy(prompt)
feature = model(images, input_str=prompt)[node_type][0]
feature = F.normalize(feature, dim=-1)
features.append(feature.cpu().float())
features = torch.stack(features)
else:
features = extract_features(
images, model, node_type=node_type, layer=layer-1, batch_size=BATCH_SIZE
)
# print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
if recursion:
rgbs = []
recursion_gammas = [recursion_l1_gamma, recursion_l2_gamma, recursion_l3_gamma]
inp = features
for i, n_eigs in enumerate([num_eig, recursion_l2_n_eigs, recursion_l3_n_eigs]):
logging_str += f"Recursion #{i+1}\n"
rgb, _logging_str, eigvecs = compute_ncut(
inp,
num_eig=n_eigs,
num_sample_ncut=num_sample_ncut,
affinity_focal_gamma=recursion_gammas[i],
knn_ncut=knn_ncut,
knn_tsne=knn_tsne,
num_sample_tsne=num_sample_tsne,
embedding_method=embedding_method,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_dist=min_dist,
sampling_method=sampling_method,
metric="cosine" if i == 0 else recursion_metric,
)
logging_str += _logging_str
rgb = dont_use_too_much_green(rgb)
rgbs.append(to_pil_images(rgb))
inp = eigvecs.reshape(*features.shape[:3], -1)
if recursion_metric == "cosine":
inp = F.normalize(inp, dim=-1)
return rgbs[0], rgbs[1], rgbs[2], logging_str
if old_school_ncut: # individual images
logging_str += "Running NCut for each image independently\n"
rgb = []
for i_image in range(features.shape[0]):
logging_str += f"Image #{i_image+1}\n"
feature = features[i_image]
_rgb, _logging_str, _ = compute_ncut(
feature[None],
num_eig=num_eig,
num_sample_ncut=30000,
affinity_focal_gamma=affinity_focal_gamma,
knn_ncut=1,
knn_tsne=10,
num_sample_tsne=300,
embedding_method=embedding_method,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_dist=min_dist,
sampling_method=sampling_method,
)
logging_str += _logging_str
rgb.append(_rgb[0])
if not old_school_ncut: # joint across all images
rgb, _logging_str, _ = compute_ncut(
features,
num_eig=num_eig,
num_sample_ncut=num_sample_ncut,
affinity_focal_gamma=affinity_focal_gamma,
knn_ncut=knn_ncut,
knn_tsne=knn_tsne,
num_sample_tsne=num_sample_tsne,
embedding_method=embedding_method,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_dist=min_dist,
sampling_method=sampling_method,
)
logging_str += _logging_str
if "AlignedThreeModelAttnNodes" == model_name:
# dirty patch for the alignedcut paper
# galleries = []
# for i_node in range(rgb.shape[1]):
# _rgb = rgb[:, i_node]
# galleries.append(to_pil_images(_rgb, target_size=56))
# return *galleries, logging_str
pil_images = []
for i_image in range(rgb.shape[0]):
_im = plot_one_image_36_grid(images[i_image], rgb[i_image])
pil_images.append(_im)
return pil_images, logging_str
if is_lisa == True:
# dirty patch for the LISA model
galleries = []
for i_prompt in range(len(lisa_prompts)):
_rgb = rgb[i_prompt]
galleries.append(to_pil_images(_rgb, target_size=256))
return *galleries, logging_str
rgb = dont_use_too_much_green(rgb)
if video_output:
video_path = get_random_path()
video_cache.add_video(video_path)
pil_images_to_video(to_pil_images(rgb), video_path)
return video_path, logging_str
else:
return to_pil_images(rgb), logging_str
def _ncut_run(*args, **kwargs):
try:
if torch.cuda.is_available():
torch.cuda.empty_cache()
ret = ncut_run(*args, **kwargs)
if torch.cuda.is_available():
torch.cuda.empty_cache()
return ret
except Exception as e:
gr.Error(str(e))
if torch.cuda.is_available():
torch.cuda.empty_cache()
return [], "Error: " + str(e)
# ret = ncut_run(*args, **kwargs)
# return ret
if USE_HUGGINGFACE_ZEROGPU:
@spaces.GPU(duration=20)
def quick_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
@spaces.GPU(duration=30)
def long_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
@spaces.GPU(duration=60)
def longer_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
@spaces.GPU(duration=120)
def super_duper_long_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def cpu_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
if not USE_HUGGINGFACE_ZEROGPU:
def quick_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def long_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def longer_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def super_duper_long_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def cpu_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def extract_video_frames(video_path, max_frames=100):
from decord import VideoReader
vr = VideoReader(video_path)
num_frames = len(vr)
if num_frames > max_frames:
gr.Warning(f"Video has {num_frames} frames. Only using {max_frames} frames. Evenly spaced.")
frame_idx = np.linspace(0, num_frames - 1, max_frames, dtype=int).tolist()
else:
frame_idx = list(range(num_frames))
frames = vr.get_batch(frame_idx).asnumpy()
# return as list of PIL images
return [(Image.fromarray(frames[i]), "") for i in range(frames.shape[0])]
def transform_image(image, resolution=(1024, 1024)):
image = image.convert('RGB').resize(resolution, Image.LANCZOS)
# Convert to torch tensor
image = torch.tensor(np.array(image).transpose(2, 0, 1)).float()
image = image / 255
# Normalize
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
image = (image - torch.tensor(mean).view(3, 1, 1)) / torch.tensor(std).view(3, 1, 1)
return image
def plot_one_image_36_grid(original_image, tsne_rgb_images):
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
original_image = original_image * torch.tensor(std).view(3, 1, 1) + torch.tensor(mean).view(3, 1, 1)
original_image = torch.clamp(original_image, 0, 1)
fig = plt.figure(figsize=(20, 4))
grid = plt.GridSpec(3, 14, hspace=0.1, wspace=0.1)
ax1 = fig.add_subplot(grid[0:2, 0:2])
img = original_image.cpu().float().numpy().transpose(1, 2, 0)
def convert_and_pad_image(np_array, pad_size=20):
"""
Converts a NumPy array of shape (height, width, 3) to a PNG image
and pads the right and bottom sides with a transparent background.
Args:
np_array (numpy.ndarray): Input NumPy array of shape (height, width, 3)
pad_size (int, optional): Number of pixels to pad on the right and bottom sides. Default is 20.
Returns:
PIL.Image: Padded PNG image with transparent background
"""
# Convert NumPy array to PIL Image
img = Image.fromarray(np_array)
# Get the original size
width, height = img.size
# Create a new image with padding and transparent background
new_width = width + pad_size
new_height = height + pad_size
padded_img = Image.new('RGBA', (new_width, new_height), color=(255, 255, 255, 0))
# Paste the original image onto the padded image
padded_img.paste(img, (0, 0))
return padded_img
img = convert_and_pad_image((img*255).astype(np.uint8))
ax1.imshow(img)
ax1.axis('off')
model_names = ['CLIP', 'DINO', 'MAE']
for i_model, model_name in enumerate(model_names):
for i_layer in range(12):
ax = fig.add_subplot(grid[i_model, i_layer+2])
ax.imshow(tsne_rgb_images[i_layer+12*i_model].cpu().float().numpy())
ax.axis('off')
if i_model == 0:
ax.set_title(f'Layer{i_layer}', fontsize=16)
if i_layer == 0:
ax.text(-0.1, 0.5, model_name, va="center", ha="center", fontsize=16, transform=ax.transAxes, rotation=90,)
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, bbox_inches='tight', pad_inches=0, dpi=100)
buf.seek(0) # Move to the start of the BytesIO buffer
img = Image.open(buf)
img = img.convert("RGB")
img = copy.deepcopy(img)
buf.close()
plt.close()
return img
def load_alignedthreemodel():
os.system("git clone https://huggingface.co/huzey/alignedthreeattn >> /dev/null 2>&1")
# pull
os.system("git -C alignedthreeattn pull >> /dev/null 2>&1")
# add to path
import sys
sys.path.append("alignedthreeattn")
from alignedthreeattn.alignedthreeattn_model import ThreeAttnNodes
align_weights = torch.load("alignedthreeattn/align_weights.pth")
model = ThreeAttnNodes(align_weights)
# url = 'https://huggingface.co/huzey/aligned_model_test/resolve/main/3attn_nodes.pth'
# save_path = "alignedthreemodel.pth"
# if not os.path.exists(save_path):
# os.system(f"wget {url} -O {save_path} -q")
# model = torch.load(save_path)
return model
promptable_diffusion_models = ["Diffusion(stabilityai/stable-diffusion-2)", "Diffusion(CompVis/stable-diffusion-v1-4)"]
promptable_segmentation_models = ["LISA(xinlai/LISA-7B-v1)"]
def run_fn(
images,
model_name="SAM(sam_vit_b)",
layer=-1,
num_eig=100,
node_type="block",
positive_prompt="",
negative_prompt="",
is_lisa=False,
lisa_prompt1="",
lisa_prompt2="",
lisa_prompt3="",
affinity_focal_gamma=0.3,
num_sample_ncut=10000,
knn_ncut=10,
embedding_method="UMAP",
num_sample_tsne=1000,
knn_tsne=10,
perplexity=500,
n_neighbors=500,
min_dist=0.1,
sampling_method="fps",
old_school_ncut=False,
max_frames=100,
recursion=False,
recursion_l2_n_eigs=50,
recursion_l3_n_eigs=20,
recursion_metric="euclidean",
recursion_l1_gamma=0.5,
recursion_l2_gamma=0.5,
recursion_l3_gamma=0.5,
):
if images is None:
gr.Warning("No images selected.")
return [], "No images selected."
video_output = False
if isinstance(images, str):
images = extract_video_frames(images, max_frames=max_frames)
video_output = True
if sampling_method == "fps":
sampling_method = "farthest"
# resize the images before acquiring GPU
if "AlignedThreeModelAttnNodes" == model_name:
# dirty patch for the alignedcut paper
resolution = (224, 224)
else:
resolution = RES_DICT[model_name]
images = [tup[0] for tup in images]
images = [transform_image(image, resolution=resolution) for image in images]
images = torch.stack(images)
if is_lisa:
import subprocess
import sys
import importlib
gr.Warning("LISA model is not compatible with the current version of transformers. Please contact the LISA and Llava author for update.")
gr.Warning("This is a dirty patch for the LISA model. switch to the old version of transformers.")
gr.Warning("Not garanteed to work.")
# LISA and Llava is not compatible with the current version of transformers
# please contact the author for update
# this is a dirty patch for the LISA model
# pre-import the SD3 pipeline
from diffusers import StableDiffusion3Pipeline
# unloading the current transformers
for module in list(sys.modules.keys()):
if "transformers" in module:
del sys.modules[module]
def install_transformers_version(version, target_dir):
"""Install a specific version of transformers to a target directory."""
if not os.path.exists(target_dir):
os.makedirs(target_dir)
# Use subprocess to run the pip command
# subprocess.check_call([sys.executable, '-m', 'pip', 'install', f'transformers=={version}', '-t', target_dir])
os.system(f"{sys.executable} -m pip install transformers=={version} -t {target_dir} >> /dev/null 2>&1")
target_dir = '/tmp/lisa_transformers_v433'
if not os.path.exists(target_dir):
install_transformers_version('4.33.0', target_dir)
# Add the new version path to sys.path
sys.path.insert(0, target_dir)
transformers = importlib.import_module("transformers")
if not is_lisa:
import subprocess
import sys
import importlib
# remove the LISA model from the sys.path
if "/tmp/lisa_transformers_v433" in sys.path:
sys.path.remove("/tmp/lisa_transformers_v433")
transformers = importlib.import_module("transformers")
if "AlignedThreeModelAttnNodes" == model_name:
# dirty patch for the alignedcut paper
model = load_alignedthreemodel()
else:
model = load_model(model_name)
if "stable" in model_name.lower() and "diffusion" in model_name.lower():
model.timestep = layer
layer = 1
if model_name in promptable_diffusion_models:
model.positive_prompt = positive_prompt
model.negative_prompt = negative_prompt
kwargs = {
"model_name": model_name,
"layer": layer,
"num_eig": num_eig,
"node_type": node_type,
"affinity_focal_gamma": affinity_focal_gamma,
"num_sample_ncut": num_sample_ncut,
"knn_ncut": knn_ncut,
"embedding_method": embedding_method,
"num_sample_tsne": num_sample_tsne,
"knn_tsne": knn_tsne,
"perplexity": perplexity,
"n_neighbors": n_neighbors,
"min_dist": min_dist,
"sampling_method": sampling_method,
"old_school_ncut": old_school_ncut,
"recursion": recursion,
"recursion_l2_n_eigs": recursion_l2_n_eigs,
"recursion_l3_n_eigs": recursion_l3_n_eigs,
"recursion_metric": recursion_metric,
"recursion_l1_gamma": recursion_l1_gamma,
"recursion_l2_gamma": recursion_l2_gamma,
"recursion_l3_gamma": recursion_l3_gamma,
"video_output": video_output,
"lisa_prompt1": lisa_prompt1,
"lisa_prompt2": lisa_prompt2,
"lisa_prompt3": lisa_prompt3,
"is_lisa": is_lisa,
}
# print(kwargs)
if old_school_ncut:
return super_duper_long_run(model, images, **kwargs)
if is_lisa:
return super_duper_long_run(model, images, **kwargs)
num_images = len(images)
if num_images >= 100:
return super_duper_long_run(model, images, **kwargs)
if 'diffusion' in model_name.lower():
return super_duper_long_run(model, images, **kwargs)
if recursion:
return longer_run(model, images, **kwargs)
if num_images >= 50:
return longer_run(model, images, **kwargs)
if old_school_ncut:
return longer_run(model, images, **kwargs)
if num_images >= 10:
return long_run(model, images, **kwargs)
if embedding_method == "UMAP":
if perplexity >= 250 or num_sample_tsne >= 500:
return longer_run(model, images, **kwargs)
return long_run(model, images, **kwargs)
if embedding_method == "t-SNE":
if perplexity >= 250 or num_sample_tsne >= 500:
return long_run(model, images, **kwargs)
return quick_run(model, images, **kwargs)
return quick_run(model, images, **kwargs)
def make_input_images_section():
gr.Markdown('### Input Images')
input_gallery = gr.Gallery(value=None, label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil", show_share_button=False)
submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary')
clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button', variant='stop')
return input_gallery, submit_button, clear_images_button
def make_input_video_section():
# gr.Markdown('### Input Video')
input_gallery = gr.Video(value=None, label="Select video", elem_id="video-input", height="auto", show_share_button=False)
gr.Markdown('_image backbone model is used to extract features from each frame, NCUT is computed on all frames_')
# max_frames_number = gr.Number(100, label="Max frames", elem_id="max_frames")
max_frames_number = gr.Slider(1, 200, step=1, label="Max frames", value=100, elem_id="max_frames")
submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary')
clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button', variant='stop')
return input_gallery, submit_button, clear_images_button, max_frames_number
def make_dataset_images_section(advanced=False, is_random=False):
gr.Markdown('### Load Datasets')
load_images_button = gr.Button("🟢 Load Images", elem_id="load-images-button", variant='primary')
advanced_radio = gr.Radio(["Basic", "Advanced"], label="Datasets", value="Advanced" if advanced else "Basic", elem_id="advanced-radio")
with gr.Column() as basic_block:
example_gallery = gr.Gallery(value=example_items, label="Example Set A", show_label=False, columns=[3], rows=[2], object_fit="scale-down", height="200px", show_share_button=False, elem_id="example-gallery")
with gr.Column() as advanced_block:
dataset_names = DATASET_NAMES
dataset_classes = DATASET_CLASSES
with gr.Row():
dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="mrm8488/ImageNet1K-val", elem_id="dataset", min_width=300)
num_images_slider = gr.Number(10, label="Number of images", elem_id="num_images")
if not is_random:
filter_by_class_checkbox = gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox")
filter_by_class_text = gr.Textbox(label="Class to select", value="0,33,99", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. (1000 classes)", visible=True)
is_random_checkbox = gr.Checkbox(label="Random shuffle", value=False, elem_id="random_seed_checkbox")
random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=False)
if is_random:
filter_by_class_checkbox = gr.Checkbox(label="Filter by class", value=False, elem_id="filter_by_class_checkbox")
filter_by_class_text = gr.Textbox(label="Class to select", value="0,33,99", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. (1000 classes)", visible=False)
is_random_checkbox = gr.Checkbox(label="Random shuffle", value=True, elem_id="random_seed_checkbox")
random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=42, elem_id="random_seed", visible=True)
if advanced:
advanced_block.visible = True
basic_block.visible = False
else:
advanced_block.visible = False
basic_block.visible = True
# change visibility
advanced_radio.change(fn=lambda x: gr.update(visible=x=="Advanced"), inputs=advanced_radio, outputs=[advanced_block])
advanced_radio.change(fn=lambda x: gr.update(visible=x=="Basic"), inputs=advanced_radio, outputs=[basic_block])
def change_filter_options(dataset_name):
idx = dataset_names.index(dataset_name)
num_classes = dataset_classes[idx]
if num_classes is None:
return (gr.Checkbox(label="Filter by class", value=False, elem_id="filter_by_class_checkbox", visible=False),
gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info="e.g. `0,1,2`. This dataset has no class label", visible=False))
return (gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox", visible=True),
gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=True))
dataset_dropdown.change(fn=change_filter_options, inputs=dataset_dropdown, outputs=[filter_by_class_checkbox, filter_by_class_text])
def change_filter_by_class(is_filter, dataset_name):
idx = dataset_names.index(dataset_name)
num_classes = dataset_classes[idx]
return gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=is_filter)
filter_by_class_checkbox.change(fn=change_filter_by_class, inputs=[filter_by_class_checkbox, dataset_dropdown], outputs=filter_by_class_text)
def change_random_seed(is_random):
return gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=is_random)
is_random_checkbox.change(fn=change_random_seed, inputs=is_random_checkbox, outputs=random_seed_slider)
def load_dataset_images(is_advanced, dataset_name, num_images=10,
is_filter=True, filter_by_class_text="0,1,2",
is_random=False, seed=1):
if is_advanced == "Basic":
gr.Info("Loaded images from Ego-Exo4D")
return default_images
try:
dataset = load_dataset(dataset_name, trust_remote_code=True)
key = list(dataset.keys())[0]
dataset = dataset[key]
except Exception as e:
gr.Error(f"Error loading dataset {dataset_name}: {e}")
return None
if num_images > len(dataset):
num_images = len(dataset)
if is_filter:
classes = [int(i) for i in filter_by_class_text.split(",")]
labels = np.array(dataset['label'])
unique_labels = np.unique(labels)
valid_classes = [i for i in classes if i in unique_labels]
invalid_classes = [i for i in classes if i not in unique_labels]
if len(invalid_classes) > 0:
gr.Warning(f"Classes {invalid_classes} not found in the dataset.")
if len(valid_classes) == 0:
gr.Error(f"Classes {classes} not found in the dataset.")
return None
# shuffle each class
chunk_size = num_images // len(valid_classes)
image_idx = []
for i in valid_classes:
idx = np.where(labels == i)[0]
if is_random:
idx = np.random.RandomState(seed).choice(idx, chunk_size, replace=False)
else:
idx = idx[:chunk_size]
image_idx.extend(idx.tolist())
if not is_filter:
if is_random:
image_idx = np.random.RandomState(seed).choice(len(dataset), num_images, replace=False).tolist()
else:
image_idx = list(range(num_images))
images = [dataset[i]['image'] for i in image_idx]
gr.Info(f"Loaded {len(images)} images from {dataset_name}")
return images
load_images_button.click(load_dataset_images,
inputs=[advanced_radio, dataset_dropdown, num_images_slider,
filter_by_class_checkbox, filter_by_class_text,
is_random_checkbox, random_seed_slider],
outputs=[input_gallery])
return dataset_dropdown, num_images_slider, random_seed_slider, load_images_button
def make_output_images_section():
gr.Markdown('### Output Images')
output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True)
return output_gallery
def make_parameters_section(is_lisa=False):
gr.Markdown("### Parameters <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Help</a>")
from ncut_pytorch.backbone import list_models, get_demo_model_names
model_names = list_models()
model_names = sorted(model_names)
if is_lisa:
model_dropdown = gr.Dropdown(["LISA(xinlai/LISA-7B-v1)"], label="Backbone", value="LISA(xinlai/LISA-7B-v1)", elem_id="model_name")
layer_slider = gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False)
layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"]
positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False)
negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False)
node_type_dropdown = gr.Dropdown(layer_names, label="LISA (SAM) decoder: Layer and Node", value="dec_1_block", elem_id="node_type")
else:
# remove LISA from the list
model_names = [m for m in model_names if "LISA" not in m]
model_dropdown = gr.Dropdown(model_names, label="Backbone", value="DiNO(dino_vitb8_448)", elem_id="model_name")
layer_slider = gr.Slider(1, 12, step=1, label="Backbone: Layer index", value=10, elem_id="layer")
positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'")
positive_prompt.visible = False
negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'")
negative_prompt.visible = False
node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
def change_layer_slider(model_name):
# SD2, UNET
if "stable" in model_name.lower() and "diffusion" in model_name.lower():
from ncut_pytorch.backbone import SD_KEY_DICT
default_layer = 'up_2_resnets_1_block' if 'diffusion-3' not in model_name else 'block_23'
return (gr.Slider(1, 49, step=1, label="Diffusion: Timestep (Noise)", value=5, elem_id="layer", visible=True, info="Noise level, 50 is max noise"),
gr.Dropdown(SD_KEY_DICT[model_name], label="Diffusion: Layer and Node", value=default_layer, elem_id="node_type", info="U-Net (v1, v2) or DiT (v3)"))
if model_name == "LISSL(xinlai/LISSL-7B-v1)":
layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"]
default_layer = "dec_1_block"
return (gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False),
gr.Dropdown(layer_names, label="LISA decoder: Layer and Node", value=default_layer, elem_id="node_type"))
layer_dict = LAYER_DICT
if model_name in layer_dict:
value = layer_dict[model_name]
return (gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True),
gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?"))
else:
value = 12
return (gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?"),
gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True))
model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=[layer_slider, node_type_dropdown])
def change_prompt_text(model_name):
if model_name in promptable_diffusion_models:
return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=True),
gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=True))
return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False),
gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False))
model_dropdown.change(fn=change_prompt_text, inputs=model_dropdown, outputs=[positive_prompt, negative_prompt])
with gr.Accordion("➡️ Click to expand: more parameters", open=False):
gr.Markdown("<a href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Docs: How to Get Better Segmentation</a>")
affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
sampling_method_dropdown = gr.Dropdown(["fps", "random"], label="NCUT: Sampling method", value="fps", elem_id="sampling_method", info="Nyström approximation")
knn_ncut_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation")
embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_shpere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
num_sample_tsne_slider = gr.Slider(100, 10000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation")
perplexity_slider = gr.Slider(10, 1000, step=10, label="t-SNE: perplexity", value=150, elem_id="perplexity")
n_neighbors_slider = gr.Slider(10, 1000, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors")
min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist")
return [model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, positive_prompt, negative_prompt]
demo = gr.Blocks(
theme=gr.themes.Base(spacing_size='md', text_size='lg', primary_hue='blue', neutral_hue='slate', secondary_hue='pink'),
# fill_width=False,
# title="ncut-pytorch",
)
with demo:
with gr.Tab('AlignedCut'):
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button = make_input_images_section()
dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section()
with gr.Column(scale=5, min_width=200):
output_gallery = make_output_images_section()
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
# logging text box
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
clear_images_button.click(lambda x: ([], []), outputs=[input_gallery, output_gallery])
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
run_fn,
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown
],
outputs=[output_gallery, logging_text],
api_name="API_AlignedCut"
)
with gr.Tab('NCut'):
gr.Markdown('#### NCut (Legacy), not aligned, no Nyström approximation')
gr.Markdown('Each image is solved independently, <em>color is <b>not</b> aligned across images</em>')
gr.Markdown('---')
gr.Markdown('<p style="text-align: center;"><b>NCut vs. AlignedCut</b></p>')
with gr.Row():
with gr.Column(scale=5, min_width=200):
gr.Markdown('#### Pros')
gr.Markdown('- Easy Solution. Use less eigenvectors.')
gr.Markdown('- Exact solution. No Nyström approximation.')
with gr.Column(scale=5, min_width=200):
gr.Markdown('#### Cons')
gr.Markdown('- Not aligned. Distance is not preserved across images. No pseudo-labeling or correspondence.')
gr.Markdown('- Poor complexity scaling. Unable to handle large number of pixels.')
gr.Markdown('---')
with gr.Row():
with gr.Column(scale=5, min_width=200):
gr.Markdown(' ')
with gr.Column(scale=5, min_width=200):
gr.Markdown('<em>color is <b>not</b> aligned across images</em> 👇')
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button = make_input_images_section()
dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section()
with gr.Column(scale=5, min_width=200):
output_gallery = make_output_images_section()
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
old_school_ncut_checkbox = gr.Checkbox(label="Old school NCut", value=True, elem_id="old_school_ncut")
invisible_list = [old_school_ncut_checkbox, num_sample_ncut_slider, knn_ncut_slider,
num_sample_tsne_slider, knn_tsne_slider, sampling_method_dropdown]
for item in invisible_list:
item.visible = False
# logging text box
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
clear_images_button.click(lambda x: ([], []), outputs=[input_gallery, output_gallery])
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
run_fn,
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown,
old_school_ncut_checkbox
],
outputs=[output_gallery, logging_text],
api_name="API_NCut",
)
with gr.Tab('Recursive Cut'):
gr.Markdown('NCUT can be applied recursively, the eigenvectors from previous iteration is the input for the next iteration NCUT. ')
gr.Markdown('__Recursive NCUT__ amplifies small object parts, please see [Documentation](https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/#recursive-ncut)')
gr.Markdown('---')
with gr.Row():
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Recursion #1)')
l1_gallery = gr.Gallery(value=[], label="Recursion #1", show_label=False, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True)
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Recursion #2)')
l2_gallery = gr.Gallery(value=[], label="Recursion #2", show_label=False, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True)
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Recursion #3)')
l3_gallery = gr.Gallery(value=[], label="Recursion #3", show_label=False, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True)
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button = make_input_images_section()
dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section(advanced=True)
num_images_slider.value = 100
clear_images_button.visible = False
with gr.Column(scale=5, min_width=200):
with gr.Accordion("➡️ Recursion config", open=True):
l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig")
l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig")
l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig")
metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric")
l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.5, elem_id="recursion_l1_gamma")
l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.5, elem_id="recursion_l2_gamma")
l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma")
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
num_eig_slider.visible = False
affinity_focal_gamma_slider.visible = False
# logging text box
with gr.Row():
with gr.Column(scale=5, min_width=200):
gr.Markdown(' ')
with gr.Column(scale=5, min_width=200):
gr.Markdown(' ')
with gr.Column(scale=5, min_width=200):
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder")
true_placeholder.visible = False
false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder")
false_placeholder.visible = False
number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder")
number_placeholder.visible = False
clear_images_button.click(lambda x: ([],), outputs=[input_gallery])
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
run_fn,
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown,
false_placeholder, number_placeholder, true_placeholder,
l2_num_eig_slider, l3_num_eig_slider, metric_dropdown,
l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider
],
outputs=[l1_gallery, l2_gallery, l3_gallery, logging_text],
api_name="API_RecursiveCut"
)
with gr.Tab('Video'):
with gr.Row():
with gr.Column(scale=5, min_width=200):
video_input_gallery, submit_button, clear_video_button, max_frame_number = make_input_video_section()
with gr.Column(scale=5, min_width=200):
video_output_gallery = gr.Video(value=None, label="NCUT Embedding", elem_id="ncut", height="auto", show_share_button=False)
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
num_sample_tsne_slider.value = 1000
perplexity_slider.value = 500
n_neighbors_slider.value = 500
knn_tsne_slider.value = 20
# logging text box
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
clear_video_button.click(lambda x: (None, None), outputs=[video_input_gallery, video_output_gallery])
place_holder_false = gr.Checkbox(label="Place holder", value=False, elem_id="place_holder_false")
place_holder_false.visible = False
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
run_fn,
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown,
place_holder_false, max_frame_number
],
outputs=[video_output_gallery, logging_text],
api_name="API_VideoCut",
)
with gr.Tab('Text'):
try:
from app_text import make_demo
except ImportError:
print("Debugging")
from draft_gradio_app_text import make_demo
make_demo()
with gr.Tab('Vision-Language'):
gr.Markdown('[LISA](https://arxiv.org/pdf/2308.00692) is a vision-language model. Input a text prompt and image, LISA generate segmentation masks.')
gr.Markdown('In the mask decoder layers, LISA updates the image features w.r.t. the text prompt')
gr.Markdown('This page aims to see how the text prompt affects the image features')
gr.Markdown('---')
gr.Markdown('<p style="text-align: center;">Color is <b>aligned</b> across 3 prompts. NCUT is computed on the concatenated features from 3 prompts.</p>')
with gr.Row():
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Prompt #1)')
l1_gallery = gr.Gallery(value=[], label="Prompt #1", show_label=False, elem_id="ncut_p1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True)
prompt1 = gr.Textbox(label="Input Prompt #1", elem_id="prompt1", value="where is the person, include the clothes, don't include the guitar and chair", lines=3)
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Prompt #2)')
l2_gallery = gr.Gallery(value=[], label="Prompt #2", show_label=False, elem_id="ncut_p2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True)
prompt2 = gr.Textbox(label="Input Prompt #2", elem_id="prompt2", value="where is the Gibson Les Pual guitar", lines=3)
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Prompt #3)')
l3_gallery = gr.Gallery(value=[], label="Prompt #3", show_label=False, elem_id="ncut_p3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True)
prompt3 = gr.Textbox(label="Input Prompt #3", elem_id="prompt3", value="where is the floor", lines=3)
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button = make_input_images_section()
dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section(advanced=False)
clear_images_button.click(lambda x: ([], [], [], []), outputs=[input_gallery, l1_gallery, l2_gallery, l3_gallery])
with gr.Column(scale=5, min_width=200):
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, positive_prompt, negative_prompt
] = make_parameters_section(is_lisa=True)
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
galleries = [l1_gallery, l2_gallery, l3_gallery]
true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder", visible=False)
submit_button.click(
run_fn,
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
true_placeholder, prompt1, prompt2, prompt3,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown
],
outputs=galleries + [logging_text],
)
with gr.Tab('Model Aligned'):
gr.Markdown('This page reproduce the results from the paper [AlignedCut](https://arxiv.org/abs/2406.18344)')
gr.Markdown('---')
gr.Markdown('**Features are aligned across models and layers.** A linear alignment transform is trained for each model/layer, learning signal comes from 1) fMRI brain activation and 2) segmentation preserving eigen-constraints.')
gr.Markdown('NCUT is computed on the concatenated graph of all models, layers, and images. Color is **aligned** across all models and layers.')
gr.Markdown('')
gr.Markdown("To see a good pattern, you will need to load 100~1000 images. 100 images need 10sec for RTX4090. Running out of HuggingFace GPU Quota? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn")
gr.Markdown('---')
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button = make_input_images_section()
dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section(advanced=True, is_random=True)
num_images_slider.value = 100
with gr.Column(scale=5, min_width=200):
output_gallery = make_output_images_section()
gr.Markdown('### TIP1: use the `full-screen` button, and use `arrow keys` to navigate')
gr.Markdown('---')
gr.Markdown('Model: CLIP(ViT-B-16/openai), DiNOv2reg(dinov2_vitb14_reg), MAE(vit_base)')
gr.Markdown('Layer type: attention output (attn), without sum of residual')
gr.Markdown('### TIP2: for large image set, please increase the `num_sample` for t-SNE and NCUT')
gr.Markdown('---')
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
model_dropdown.value = "AlignedThreeModelAttnNodes"
model_dropdown.visible = False
layer_slider.visible = False
node_type_dropdown.visible = False
num_sample_ncut_slider.value = 10000
num_sample_tsne_slider.value = 1000
# logging text box
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
# galleries = []
# for i_model, model_name in enumerate(["CLIP", "DINO", "MAE"]):
# with gr.Row():
# for i_layer in range(1, 13):
# with gr.Column(scale=5, min_width=200):
# gr.Markdown(f'### {model_name} Layer {i_layer}')
# output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True)
# galleries.append(output_gallery)
# clear_images_button.click(lambda x: [] * (len(galleries) + 1), outputs=[input_gallery] + galleries)
clear_images_button.click(lambda x: ([], []), outputs=[input_gallery, output_gallery])
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
run_fn,
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown
],
# outputs=galleries + [logging_text],
outputs=[output_gallery, logging_text],
)
with gr.Tab('Compare Models'):
def add_one_model(i_model=1):
with gr.Column(scale=5, min_width=200) as col:
gr.Markdown(f'### Output Images')
output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True)
submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary')
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
# logging text box
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
run_fn,
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown
],
outputs=[output_gallery, logging_text]
)
return col
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button = make_input_images_section()
clear_images_button.click(lambda x: ([],), outputs=[input_gallery])
submit_button.visible = False
dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section(advanced=True)
for i in range(2):
add_one_model()
# Create rows and buttons in a loop
rows = []
buttons = []
for i in range(4):
row = gr.Row(visible=False)
rows.append(row)
with row:
for j in range(3):
with gr.Column(scale=5, min_width=200):
add_one_model()
button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3)
buttons.append(button)
if i > 0:
# Reveal the current row and next button
buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row)
buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button)
# Hide the current button
buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1])
# Last button only reveals the last row and hides itself
buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1])
buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1])
with gr.Tab('📄About'):
gr.Markdown("##### This demo is for python package `ncut-pytorch`, please visit the [Documentation](https://ncut-pytorch.readthedocs.io/) ")
gr.Markdown("---")
gr.Markdown("**Normalized Cuts**, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.")
gr.Markdown("---")
gr.Markdown("##### We have implemented NCut, with some advanced features:")
gr.Markdown("- **Nyström** Normalized Cut, is a new approximation algorithm developed for large-scale graph cuts, a large-graph of million nodes can be processed in under 10s (cpu) or 2s (gpu).")
gr.Markdown("- **spectral-tSNE** visualization, a new method to visualize the high-dimensional eigenvector space with 3D RGB cube. Color is aligned across images, color infers distance in representation.")
with gr.Row():
with gr.Column():
gr.Markdown("##### This demo is for `ncut-pytorch`, [Documentation](https://ncut-pytorch.readthedocs.io/) ")
with gr.Column():
gr.Markdown("###### Running out of GPU? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn")
# # for local development
# if os.path.exists("/hf_token.txt"):
# os.environ["HF_ACCESS_TOKEN"] = open("/hf_token.txt").read().strip()
if DOWNLOAD_ALL_MODELS_DATASETS:
from ncut_pytorch.backbone import download_all_models
threading.Thread(target=download_all_models).start()
from ncut_pytorch.backbone_text import download_all_models
threading.Thread(target=download_all_models).start()
threading.Thread(target=download_all_datasets).start()
demo.launch(share=True)
# %% |