Spaces:
Running
on
Zero
Running
on
Zero
update data and model
Browse files- app.py +189 -106
- backbone.py +589 -281
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,26 +1,51 @@
|
|
1 |
# Author: Huzheng Yang
|
2 |
# %%
|
3 |
USE_SPACES = True
|
|
|
4 |
|
5 |
-
if USE_SPACES: # huggingface ZeroGPU
|
6 |
try:
|
7 |
import spaces
|
8 |
except ImportError:
|
9 |
-
USE_SPACES = False # run on
|
|
|
10 |
|
11 |
import os
|
12 |
import gradio as gr
|
13 |
|
14 |
import torch
|
|
|
15 |
from PIL import Image
|
16 |
import numpy as np
|
17 |
import time
|
18 |
|
19 |
import gradio as gr
|
20 |
|
21 |
-
from backbone import extract_features
|
|
|
22 |
from ncut_pytorch import NCUT, eigenvector_to_rgb
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def compute_ncut(
|
26 |
features,
|
@@ -55,6 +80,7 @@ def compute_ncut(
|
|
55 |
knn=knn_ncut,
|
56 |
sample_method=sampling_method,
|
57 |
distance=metric,
|
|
|
58 |
).fit_transform(features.reshape(-1, features.shape[-1]))
|
59 |
# print(f"NCUT time: {time.time() - start:.2f}s")
|
60 |
logging_str += f"NCUT time: {time.time() - start:.2f}s\n"
|
@@ -147,6 +173,7 @@ example_items = downscaled_images[:3] + downscaled_outputs[:3]
|
|
147 |
|
148 |
|
149 |
def ncut_run(
|
|
|
150 |
images,
|
151 |
model_name="SAM(sam_vit_b)",
|
152 |
layer=-1,
|
@@ -176,15 +203,15 @@ def ncut_run(
|
|
176 |
logging_str += f"Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.\n"
|
177 |
perplexity = num_sample_tsne - 1
|
178 |
n_neighbors = num_sample_tsne - 1
|
179 |
-
|
|
|
|
|
180 |
|
181 |
node_type = node_type.split(":")[0].strip()
|
182 |
-
|
183 |
-
images = [image[0] for image in images] # remove the label
|
184 |
-
|
185 |
start = time.time()
|
186 |
features = extract_features(
|
187 |
-
images, model_name=model_name, node_type=node_type, layer=layer
|
188 |
)
|
189 |
# print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
|
190 |
logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
|
@@ -213,6 +240,8 @@ def ncut_run(
|
|
213 |
rgb = dont_use_too_much_green(rgb)
|
214 |
rgbs.append(to_pil_images(rgb))
|
215 |
inp = eigvecs.reshape(*features.shape[:3], -1)
|
|
|
|
|
216 |
return rgbs[0], rgbs[1], rgbs[2], logging_str
|
217 |
|
218 |
if old_school_ncut: # individual images
|
@@ -273,6 +302,8 @@ def _ncut_run(*args, **kwargs):
|
|
273 |
return ret
|
274 |
except Exception as e:
|
275 |
gr.Error(str(e))
|
|
|
|
|
276 |
return [], "Error: " + str(e)
|
277 |
|
278 |
if USE_SPACES:
|
@@ -318,6 +349,15 @@ def extract_video_frames(video_path, max_frames=100):
|
|
318 |
# return as list of PIL images
|
319 |
return [(Image.fromarray(frames[i]), "") for i in range(frames.shape[0])]
|
320 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
def run_fn(
|
322 |
images,
|
323 |
model_name="SAM(sam_vit_b)",
|
@@ -341,7 +381,7 @@ def run_fn(
|
|
341 |
recursion_l3_n_eigs=20,
|
342 |
recursion_metric="euclidean",
|
343 |
):
|
344 |
-
|
345 |
if images is None:
|
346 |
gr.Warning("No images selected.")
|
347 |
return [], "No images selected."
|
@@ -353,6 +393,14 @@ def run_fn(
|
|
353 |
|
354 |
if sampling_method == "fps":
|
355 |
sampling_method = "farthest"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
|
357 |
kwargs = {
|
358 |
"model_name": model_name,
|
@@ -379,25 +427,25 @@ def run_fn(
|
|
379 |
# print(kwargs)
|
380 |
num_images = len(images)
|
381 |
if num_images > 100:
|
382 |
-
return super_duper_long_run(images, **kwargs)
|
383 |
if recursion:
|
384 |
-
return longer_run(images, **kwargs)
|
385 |
if num_images > 50:
|
386 |
-
return longer_run(images, **kwargs)
|
387 |
if old_school_ncut:
|
388 |
-
return longer_run(images, **kwargs)
|
389 |
if num_images > 10:
|
390 |
-
return long_run(images, **kwargs)
|
391 |
if embedding_method == "UMAP":
|
392 |
if perplexity >= 250 or num_sample_tsne >= 500:
|
393 |
-
return longer_run(images, **kwargs)
|
394 |
-
return long_run(images, **kwargs)
|
395 |
if embedding_method == "t-SNE":
|
396 |
if perplexity >= 250 or num_sample_tsne >= 500:
|
397 |
-
return long_run(images, **kwargs)
|
398 |
-
return quick_run(images, **kwargs)
|
399 |
|
400 |
-
return quick_run(images, **kwargs)
|
401 |
|
402 |
|
403 |
|
@@ -435,23 +483,42 @@ def make_example_video_section():
|
|
435 |
return load_video_button
|
436 |
|
437 |
def make_dataset_images_section(open=False):
|
|
|
438 |
with gr.Accordion("➡️ Click to expand: Load from dataset", open=open):
|
439 |
-
dataset_names =
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
]
|
448 |
-
dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="UCSC-VLAA/Recap-COCO-30K", elem_id="dataset")
|
449 |
-
num_images_slider = gr.Slider(1, 200, step=1, label="Number of images", value=9, elem_id="num_images")
|
450 |
-
# random_seed_slider = gr.Number(0, label="Random seed", elem_id="random_seed")
|
451 |
-
random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed")
|
452 |
load_dataset_button = gr.Button("Load Dataset", elem_id="load-dataset-button")
|
453 |
-
|
454 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
try:
|
456 |
dataset = load_dataset(dataset_name, trust_remote_code=True)
|
457 |
key = list(dataset.keys())[0]
|
@@ -461,11 +528,38 @@ def make_dataset_images_section(open=False):
|
|
461 |
return None
|
462 |
if num_images > len(dataset):
|
463 |
num_images = len(dataset)
|
464 |
-
|
465 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
images = [dataset[i]['image'] for i in image_idx]
|
467 |
return images
|
468 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
469 |
return dataset_dropdown, num_images_slider, random_seed_slider, load_dataset_button
|
470 |
|
471 |
def make_output_images_section():
|
@@ -475,25 +569,21 @@ def make_output_images_section():
|
|
475 |
|
476 |
def make_parameters_section():
|
477 |
gr.Markdown('### Parameters')
|
478 |
-
|
479 |
-
|
480 |
-
"MobileSAM",
|
481 |
-
"DiNO(dinov2_vitb14_reg)",
|
482 |
-
"CLIP(openai/clip-vit-base-patch16)",
|
483 |
-
"MAE(vit_base)",
|
484 |
-
"SAM2(sam2_hiera_b+)",
|
485 |
-
"SAM2(sam2_hiera_t)",
|
486 |
-
]
|
487 |
model_dropdown = gr.Dropdown(model_names, label="Backbone", value="SAM2(sam2_hiera_t)", elem_id="model_name")
|
488 |
-
layer_slider = gr.Slider(
|
489 |
node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
|
490 |
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
|
491 |
|
492 |
def change_layer_slider(model_name):
|
493 |
-
|
494 |
-
|
|
|
|
|
495 |
else:
|
496 |
-
|
|
|
497 |
model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=layer_slider)
|
498 |
|
499 |
with gr.Accordion("➡️ Click to expand: more parameters", open=False):
|
@@ -728,75 +818,68 @@ with gr.Blocks() as demo:
|
|
728 |
gr.Markdown('![ncut](https://ncut-pytorch.readthedocs.io/en/latest/images/gallery/llama3/llama3_layer_31.jpg)')
|
729 |
|
730 |
with gr.Tab('Compare'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
731 |
|
732 |
with gr.Row():
|
733 |
with gr.Column(scale=5, min_width=200):
|
734 |
input_gallery, submit_button, clear_images_button = make_input_images_section()
|
|
|
735 |
submit_button.visible = False
|
736 |
load_images_button, example_gallery, hide_button = make_example_images_section()
|
737 |
example_gallery.visible = False
|
738 |
hide_button.visible = False
|
739 |
dataset_dropdown, num_images_slider, random_seed_slider, load_dataset_button = make_dataset_images_section(open=True)
|
740 |
load_images_button.click(lambda x: default_images, outputs=input_gallery)
|
|
|
741 |
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
|
|
|
|
|
|
758 |
|
759 |
-
with gr.Column(scale=5, min_width=200):
|
760 |
-
gr.Markdown('### Output Model2')
|
761 |
-
output_gallery2 = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut2", columns=[3], rows=[1], object_fit="contain", height="auto")
|
762 |
-
submit_button2 = gr.Button("🔴RUN", elem_id="submit_button2")
|
763 |
-
[
|
764 |
-
model_dropdown2, layer_slider2, node_type_dropdown2, num_eig_slider2,
|
765 |
-
affinity_focal_gamma_slider2, num_sample_ncut_slider2, knn_ncut_slider2,
|
766 |
-
embedding_method_dropdown2, num_sample_tsne_slider2, knn_tsne_slider2,
|
767 |
-
perplexity_slider2, n_neighbors_slider2, min_dist_slider2,
|
768 |
-
sampling_method_dropdown2
|
769 |
-
] = make_parameters_section()
|
770 |
-
model_dropdown2.value = 'DiNO(dinov2_vitb14_reg)'
|
771 |
-
layer_slider2.value = 9
|
772 |
-
node_type_dropdown2.value = 'attn: attention output'
|
773 |
-
# logging text box
|
774 |
-
logging_text2 = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
|
775 |
|
776 |
-
|
777 |
-
|
778 |
-
run_fn,
|
779 |
-
inputs=[
|
780 |
-
input_gallery, model_dropdown1, layer_slider1, num_eig_slider1, node_type_dropdown1,
|
781 |
-
affinity_focal_gamma_slider1, num_sample_ncut_slider1, knn_ncut_slider1,
|
782 |
-
embedding_method_dropdown1, num_sample_tsne_slider1, knn_tsne_slider1,
|
783 |
-
perplexity_slider1, n_neighbors_slider1, min_dist_slider1, sampling_method_dropdown1
|
784 |
-
],
|
785 |
-
outputs=[output_gallery1, logging_text1]
|
786 |
-
)
|
787 |
-
|
788 |
-
submit_button2.click(
|
789 |
-
run_fn,
|
790 |
-
inputs=[
|
791 |
-
input_gallery, model_dropdown2, layer_slider2, num_eig_slider2, node_type_dropdown2,
|
792 |
-
affinity_focal_gamma_slider2, num_sample_ncut_slider2, knn_ncut_slider2,
|
793 |
-
embedding_method_dropdown2, num_sample_tsne_slider2, knn_tsne_slider2,
|
794 |
-
perplexity_slider2, n_neighbors_slider2, min_dist_slider2, sampling_method_dropdown2
|
795 |
-
],
|
796 |
-
outputs=[output_gallery2, logging_text2]
|
797 |
-
)
|
798 |
-
|
799 |
-
|
800 |
demo.launch(share=True)
|
801 |
|
802 |
# %%
|
|
|
1 |
# Author: Huzheng Yang
|
2 |
# %%
|
3 |
USE_SPACES = True
|
4 |
+
BATCH_SIZE = 4
|
5 |
|
6 |
+
if USE_SPACES: # huggingface ZeroGPU, dynamic GPU allocation
|
7 |
try:
|
8 |
import spaces
|
9 |
except ImportError:
|
10 |
+
USE_SPACES = False # run on local machine
|
11 |
+
BATCH_SIZE = 1
|
12 |
|
13 |
import os
|
14 |
import gradio as gr
|
15 |
|
16 |
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
from PIL import Image
|
19 |
import numpy as np
|
20 |
import time
|
21 |
|
22 |
import gradio as gr
|
23 |
|
24 |
+
from backbone import extract_features, download_all_models, get_model
|
25 |
+
from backbone import MODEL_DICT, LAYER_DICT, RES_DICT
|
26 |
from ncut_pytorch import NCUT, eigenvector_to_rgb
|
27 |
|
28 |
+
DATASET_TUPS = [
|
29 |
+
# (name, num_classes)
|
30 |
+
('UCSC-VLAA/Recap-COCO-30K', None),
|
31 |
+
('nateraw/pascal-voc-2012', None),
|
32 |
+
('johnowhitaker/imagenette2-320', 10),
|
33 |
+
('jainr3/diffusiondb-pixelart', None),
|
34 |
+
('nielsr/CelebA-faces', None),
|
35 |
+
('JapanDegitalMaterial/Places_in_Japan', None),
|
36 |
+
('Borismile/Anime-dataset', None),
|
37 |
+
('Multimodal-Fatima/CUB_train', 200),
|
38 |
+
('mrm8488/ImageNet1K-val', 1000),
|
39 |
+
]
|
40 |
+
DATASET_NAMES = [tup[0] for tup in DATASET_TUPS]
|
41 |
+
DATASET_CLASSES = [tup[1] for tup in DATASET_TUPS]
|
42 |
+
|
43 |
+
from datasets import load_dataset
|
44 |
+
|
45 |
+
def download_all_datasets():
|
46 |
+
for name in DATASET_NAMES:
|
47 |
+
print(f"Downloading {name}")
|
48 |
+
load_dataset(name, trust_remote_code=True)
|
49 |
|
50 |
def compute_ncut(
|
51 |
features,
|
|
|
80 |
knn=knn_ncut,
|
81 |
sample_method=sampling_method,
|
82 |
distance=metric,
|
83 |
+
normalize_features=False,
|
84 |
).fit_transform(features.reshape(-1, features.shape[-1]))
|
85 |
# print(f"NCUT time: {time.time() - start:.2f}s")
|
86 |
logging_str += f"NCUT time: {time.time() - start:.2f}s\n"
|
|
|
173 |
|
174 |
|
175 |
def ncut_run(
|
176 |
+
model,
|
177 |
images,
|
178 |
model_name="SAM(sam_vit_b)",
|
179 |
layer=-1,
|
|
|
203 |
logging_str += f"Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.\n"
|
204 |
perplexity = num_sample_tsne - 1
|
205 |
n_neighbors = num_sample_tsne - 1
|
206 |
+
|
207 |
+
if torch.cuda.is_available():
|
208 |
+
torch.cuda.empty_cache()
|
209 |
|
210 |
node_type = node_type.split(":")[0].strip()
|
211 |
+
|
|
|
|
|
212 |
start = time.time()
|
213 |
features = extract_features(
|
214 |
+
images, model, model_name=model_name, node_type=node_type, layer=layer-1, batch_size=BATCH_SIZE
|
215 |
)
|
216 |
# print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
|
217 |
logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
|
|
|
240 |
rgb = dont_use_too_much_green(rgb)
|
241 |
rgbs.append(to_pil_images(rgb))
|
242 |
inp = eigvecs.reshape(*features.shape[:3], -1)
|
243 |
+
if recursion_metric == "cosine":
|
244 |
+
inp = F.normalize(inp, dim=-1)
|
245 |
return rgbs[0], rgbs[1], rgbs[2], logging_str
|
246 |
|
247 |
if old_school_ncut: # individual images
|
|
|
302 |
return ret
|
303 |
except Exception as e:
|
304 |
gr.Error(str(e))
|
305 |
+
if torch.cuda.is_available():
|
306 |
+
torch.cuda.empty_cache()
|
307 |
return [], "Error: " + str(e)
|
308 |
|
309 |
if USE_SPACES:
|
|
|
349 |
# return as list of PIL images
|
350 |
return [(Image.fromarray(frames[i]), "") for i in range(frames.shape[0])]
|
351 |
|
352 |
+
def transform_image(image, resolution=(1024, 1024)):
|
353 |
+
image = image.convert('RGB').resize(resolution, Image.LANCZOS)
|
354 |
+
# Convert to torch tensor
|
355 |
+
image = torch.tensor(np.array(image).transpose(2, 0, 1)).float()
|
356 |
+
image = image / 255
|
357 |
+
# Normalize
|
358 |
+
image = (image - 0.5) / 0.5
|
359 |
+
return image
|
360 |
+
|
361 |
def run_fn(
|
362 |
images,
|
363 |
model_name="SAM(sam_vit_b)",
|
|
|
381 |
recursion_l3_n_eigs=20,
|
382 |
recursion_metric="euclidean",
|
383 |
):
|
384 |
+
|
385 |
if images is None:
|
386 |
gr.Warning("No images selected.")
|
387 |
return [], "No images selected."
|
|
|
393 |
|
394 |
if sampling_method == "fps":
|
395 |
sampling_method = "farthest"
|
396 |
+
|
397 |
+
# resize the images before acquiring GPU
|
398 |
+
resolution = RES_DICT[model_name]
|
399 |
+
images = [tup[0] for tup in images]
|
400 |
+
images = [transform_image(image, resolution=resolution) for image in images]
|
401 |
+
images = torch.stack(images)
|
402 |
+
|
403 |
+
model = get_model(model_name)
|
404 |
|
405 |
kwargs = {
|
406 |
"model_name": model_name,
|
|
|
427 |
# print(kwargs)
|
428 |
num_images = len(images)
|
429 |
if num_images > 100:
|
430 |
+
return super_duper_long_run(model, images, **kwargs)
|
431 |
if recursion:
|
432 |
+
return longer_run(model, images, **kwargs)
|
433 |
if num_images > 50:
|
434 |
+
return longer_run(model, images, **kwargs)
|
435 |
if old_school_ncut:
|
436 |
+
return longer_run(model, images, **kwargs)
|
437 |
if num_images > 10:
|
438 |
+
return long_run(model, images, **kwargs)
|
439 |
if embedding_method == "UMAP":
|
440 |
if perplexity >= 250 or num_sample_tsne >= 500:
|
441 |
+
return longer_run(model, images, **kwargs)
|
442 |
+
return long_run(model, images, **kwargs)
|
443 |
if embedding_method == "t-SNE":
|
444 |
if perplexity >= 250 or num_sample_tsne >= 500:
|
445 |
+
return long_run(model, images, **kwargs)
|
446 |
+
return quick_run(model, images, **kwargs)
|
447 |
|
448 |
+
return quick_run(model, images, **kwargs)
|
449 |
|
450 |
|
451 |
|
|
|
483 |
return load_video_button
|
484 |
|
485 |
def make_dataset_images_section(open=False):
|
486 |
+
|
487 |
with gr.Accordion("➡️ Click to expand: Load from dataset", open=open):
|
488 |
+
dataset_names = DATASET_NAMES
|
489 |
+
dataset_classes = DATASET_CLASSES
|
490 |
+
dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="mrm8488/ImageNet1K-val", elem_id="dataset")
|
491 |
+
num_images_slider = gr.Number(10, label="Number of images", elem_id="num_images")
|
492 |
+
filter_by_class_checkbox = gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox")
|
493 |
+
filter_by_class_text = gr.Textbox(label="Class to select", value="0,33,99", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. (1000 classes)", visible=True)
|
494 |
+
is_random_checkbox = gr.Checkbox(label="Random shuffle", value=False, elem_id="random_seed_checkbox")
|
495 |
+
random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=False)
|
|
|
|
|
|
|
|
|
|
|
496 |
load_dataset_button = gr.Button("Load Dataset", elem_id="load-dataset-button")
|
497 |
+
|
498 |
+
def change_filter_options(dataset_name):
|
499 |
+
idx = dataset_names.index(dataset_name)
|
500 |
+
num_classes = dataset_classes[idx]
|
501 |
+
if num_classes is None:
|
502 |
+
return (gr.Checkbox(label="Filter by class", value=False, elem_id="filter_by_class_checkbox", visible=False),
|
503 |
+
gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info="e.g. `0,1,2`. This dataset has no class label", visible=False))
|
504 |
+
return (gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox", visible=True),
|
505 |
+
gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=True))
|
506 |
+
dataset_dropdown.change(fn=change_filter_options, inputs=dataset_dropdown, outputs=[filter_by_class_checkbox, filter_by_class_text])
|
507 |
+
|
508 |
+
def change_filter_by_class(is_filter, dataset_name):
|
509 |
+
idx = dataset_names.index(dataset_name)
|
510 |
+
num_classes = dataset_classes[idx]
|
511 |
+
return gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=is_filter)
|
512 |
+
filter_by_class_checkbox.change(fn=change_filter_by_class, inputs=[filter_by_class_checkbox, dataset_dropdown], outputs=filter_by_class_text)
|
513 |
+
|
514 |
+
def change_random_seed(is_random):
|
515 |
+
return gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=is_random)
|
516 |
+
is_random_checkbox.change(fn=change_random_seed, inputs=is_random_checkbox, outputs=random_seed_slider)
|
517 |
+
|
518 |
+
|
519 |
+
def load_dataset_images(dataset_name, num_images=10,
|
520 |
+
is_filter=True, filter_by_class_text="0,1,2",
|
521 |
+
is_random=False, seed=1):
|
522 |
try:
|
523 |
dataset = load_dataset(dataset_name, trust_remote_code=True)
|
524 |
key = list(dataset.keys())[0]
|
|
|
528 |
return None
|
529 |
if num_images > len(dataset):
|
530 |
num_images = len(dataset)
|
531 |
+
if is_filter:
|
532 |
+
classes = list(map(int, filter_by_class_text.split(",")))
|
533 |
+
labels = np.array(dataset['label'])
|
534 |
+
unique_labels = np.unique(labels)
|
535 |
+
valid_classes = [i for i in classes if i in unique_labels]
|
536 |
+
if len(valid_classes) == 0:
|
537 |
+
gr.Error(f"Classes {classes} not found in the dataset.")
|
538 |
+
return None
|
539 |
+
# shuffle each class
|
540 |
+
chunk_size = num_images // len(valid_classes)
|
541 |
+
image_idx = []
|
542 |
+
for i in valid_classes:
|
543 |
+
idx = np.where(labels == i)[0]
|
544 |
+
if is_random:
|
545 |
+
idx = np.random.RandomState(seed).choice(idx, chunk_size, replace=False)
|
546 |
+
else:
|
547 |
+
idx = idx[:chunk_size]
|
548 |
+
image_idx.extend(idx.tolist())
|
549 |
+
if not is_filter:
|
550 |
+
if is_random:
|
551 |
+
image_idx = np.random.RandomState(seed).choice(len(dataset), num_images, replace=False).tolist()
|
552 |
+
else:
|
553 |
+
image_idx = list(range(num_images))
|
554 |
images = [dataset[i]['image'] for i in image_idx]
|
555 |
return images
|
556 |
+
|
557 |
+
load_dataset_button.click(load_dataset_images,
|
558 |
+
inputs=[dataset_dropdown, num_images_slider,
|
559 |
+
filter_by_class_checkbox, filter_by_class_text,
|
560 |
+
is_random_checkbox, random_seed_slider],
|
561 |
+
outputs=[input_gallery])
|
562 |
+
|
563 |
return dataset_dropdown, num_images_slider, random_seed_slider, load_dataset_button
|
564 |
|
565 |
def make_output_images_section():
|
|
|
569 |
|
570 |
def make_parameters_section():
|
571 |
gr.Markdown('### Parameters')
|
572 |
+
from backbone import get_all_model_names
|
573 |
+
model_names = get_all_model_names()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
574 |
model_dropdown = gr.Dropdown(model_names, label="Backbone", value="SAM2(sam2_hiera_t)", elem_id="model_name")
|
575 |
+
layer_slider = gr.Slider(1, 12, step=1, label="Backbone: Layer index", value=12, elem_id="layer")
|
576 |
node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
|
577 |
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
|
578 |
|
579 |
def change_layer_slider(model_name):
|
580 |
+
layer_dict = LAYER_DICT
|
581 |
+
if model_name in layer_dict:
|
582 |
+
value = layer_dict[model_name]
|
583 |
+
return gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True)
|
584 |
else:
|
585 |
+
value = 12
|
586 |
+
return gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True)
|
587 |
model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=layer_slider)
|
588 |
|
589 |
with gr.Accordion("➡️ Click to expand: more parameters", open=False):
|
|
|
818 |
gr.Markdown('![ncut](https://ncut-pytorch.readthedocs.io/en/latest/images/gallery/llama3/llama3_layer_31.jpg)')
|
819 |
|
820 |
with gr.Tab('Compare'):
|
821 |
+
def add_one_model(i_model=1):
|
822 |
+
with gr.Column(scale=5, min_width=200) as col:
|
823 |
+
gr.Markdown(f'### Output Model {i_model}')
|
824 |
+
output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto")
|
825 |
+
submit_button = gr.Button("🔴RUN", elem_id=f"submit_button{i_model}")
|
826 |
+
[
|
827 |
+
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
|
828 |
+
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
829 |
+
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
830 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider,
|
831 |
+
sampling_method_dropdown
|
832 |
+
] = make_parameters_section()
|
833 |
+
# logging text box
|
834 |
+
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
|
835 |
+
submit_button.click(
|
836 |
+
run_fn,
|
837 |
+
inputs=[
|
838 |
+
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
|
839 |
+
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
840 |
+
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
841 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown
|
842 |
+
],
|
843 |
+
outputs=[output_gallery, logging_text]
|
844 |
+
)
|
845 |
+
|
846 |
+
return col
|
847 |
|
848 |
with gr.Row():
|
849 |
with gr.Column(scale=5, min_width=200):
|
850 |
input_gallery, submit_button, clear_images_button = make_input_images_section()
|
851 |
+
clear_images_button.click(lambda x: ([],), outputs=[input_gallery])
|
852 |
submit_button.visible = False
|
853 |
load_images_button, example_gallery, hide_button = make_example_images_section()
|
854 |
example_gallery.visible = False
|
855 |
hide_button.visible = False
|
856 |
dataset_dropdown, num_images_slider, random_seed_slider, load_dataset_button = make_dataset_images_section(open=True)
|
857 |
load_images_button.click(lambda x: default_images, outputs=input_gallery)
|
858 |
+
|
859 |
|
860 |
+
for i in range(1, 3):
|
861 |
+
add_one_model(i)
|
862 |
+
|
863 |
+
with gr.Row():
|
864 |
+
for i in range(1, 4):
|
865 |
+
with gr.Column(scale=5, min_width=200):
|
866 |
+
slot = gr.Button("Add model", elem_id=f"add_model_button{i}")
|
867 |
+
col = add_one_model(i+2)
|
868 |
+
col.visible = False
|
869 |
+
|
870 |
+
slot.click(
|
871 |
+
fn=lambda x: gr.update(visible=True),
|
872 |
+
outputs=col
|
873 |
+
)
|
874 |
+
slot.click(
|
875 |
+
fn=lambda x: gr.update(visible=False),
|
876 |
+
outputs=slot
|
877 |
+
)
|
878 |
+
|
879 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
880 |
|
881 |
+
download_all_models()
|
882 |
+
download_all_datasets()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
883 |
demo.launch(share=True)
|
884 |
|
885 |
# %%
|
backbone.py
CHANGED
@@ -12,19 +12,193 @@ import time
|
|
12 |
|
13 |
import gradio as gr
|
14 |
|
|
|
|
|
15 |
MODEL_DICT = {}
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
def transform_image(image, resolution=(1024, 1024), use_cuda=False):
|
19 |
-
image = image.convert('RGB').resize(resolution, Image.Resampling.NEAREST)
|
20 |
-
# Convert to torch tensor
|
21 |
-
image = torch.tensor(np.array(image).transpose(2, 0, 1)).float()
|
22 |
-
if use_cuda:
|
23 |
-
image = image.cuda()
|
24 |
-
image = image / 255
|
25 |
-
# Normalize
|
26 |
-
image = (image - 0.5) / 0.5
|
27 |
-
return image
|
28 |
|
29 |
class MobileSAM(nn.Module):
|
30 |
def __init__(self, **kwargs):
|
@@ -152,181 +326,24 @@ class MobileSAM(nn.Module):
|
|
152 |
attn_outputs.append(blk.attn_output)
|
153 |
mlp_outputs.append(blk.mlp_output)
|
154 |
block_outputs.append(blk.block_output)
|
155 |
-
return
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
class SAM(torch.nn.Module):
|
162 |
-
def __init__(self, **kwargs):
|
163 |
-
super().__init__(**kwargs)
|
164 |
-
from segment_anything import sam_model_registry, SamPredictor
|
165 |
-
from segment_anything.modeling.sam import Sam
|
166 |
-
|
167 |
-
checkpoint = "sam_vit_b_01ec64.pth"
|
168 |
-
if not os.path.exists(checkpoint):
|
169 |
-
checkpoint_url = (
|
170 |
-
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
|
171 |
-
)
|
172 |
-
import requests
|
173 |
-
|
174 |
-
r = requests.get(checkpoint_url)
|
175 |
-
with open(checkpoint, "wb") as f:
|
176 |
-
f.write(r.content)
|
177 |
-
|
178 |
-
sam: Sam = sam_model_registry["vit_b"](checkpoint=checkpoint)
|
179 |
-
|
180 |
-
from segment_anything.modeling.image_encoder import (
|
181 |
-
window_partition,
|
182 |
-
window_unpartition,
|
183 |
-
)
|
184 |
-
|
185 |
-
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
|
186 |
-
shortcut = x
|
187 |
-
x = self.norm1(x)
|
188 |
-
# Window partition
|
189 |
-
if self.window_size > 0:
|
190 |
-
H, W = x.shape[1], x.shape[2]
|
191 |
-
x, pad_hw = window_partition(x, self.window_size)
|
192 |
-
|
193 |
-
x = self.attn(x)
|
194 |
-
# Reverse window partition
|
195 |
-
if self.window_size > 0:
|
196 |
-
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
197 |
-
self.attn_output = x.clone()
|
198 |
-
|
199 |
-
x = shortcut + x
|
200 |
-
mlp_outout = self.mlp(self.norm2(x))
|
201 |
-
self.mlp_output = mlp_outout.clone()
|
202 |
-
x = x + mlp_outout
|
203 |
-
self.block_output = x.clone()
|
204 |
-
|
205 |
-
return x
|
206 |
-
|
207 |
-
setattr(sam.image_encoder.blocks[0].__class__, "forward", new_block_forward)
|
208 |
-
|
209 |
-
self.image_encoder = sam.image_encoder
|
210 |
-
self.image_encoder.eval()
|
211 |
-
|
212 |
-
@torch.no_grad()
|
213 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
214 |
-
with torch.no_grad():
|
215 |
-
x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
|
216 |
-
out = self.image_encoder(x)
|
217 |
-
|
218 |
-
attn_outputs, mlp_outputs, block_outputs = [], [], []
|
219 |
-
for i, blk in enumerate(self.image_encoder.blocks):
|
220 |
-
attn_outputs.append(blk.attn_output)
|
221 |
-
mlp_outputs.append(blk.mlp_output)
|
222 |
-
block_outputs.append(blk.block_output)
|
223 |
-
attn_outputs = torch.stack(attn_outputs)
|
224 |
-
mlp_outputs = torch.stack(mlp_outputs)
|
225 |
-
block_outputs = torch.stack(block_outputs)
|
226 |
-
return attn_outputs, mlp_outputs, block_outputs
|
227 |
-
|
228 |
-
|
229 |
-
MODEL_DICT["SAM(sam_vit_b)"] = SAM()
|
230 |
-
|
231 |
-
|
232 |
-
class SAM2(nn.Module):
|
233 |
-
|
234 |
-
def __init__(self, model_cfg='sam2_hiera_b+',):
|
235 |
-
super().__init__()
|
236 |
-
|
237 |
-
try:
|
238 |
-
from sam2.build_sam import build_sam2
|
239 |
-
except ImportError:
|
240 |
-
print("Please install segment_anything_2 from https://github.com/facebookresearch/segment-anything-2.git")
|
241 |
-
return
|
242 |
-
|
243 |
-
config_dict = {
|
244 |
-
'sam2_hiera_large': ("sam2_hiera_large.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt"),
|
245 |
-
'sam2_hiera_b+': ("sam2_hiera_base_plus.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_base_plus.pt"),
|
246 |
-
'sam2_hiera_s': ("sam2_hiera_small.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_small.pt"),
|
247 |
-
'sam2_hiera_t': ("sam2_hiera_tiny.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt"),
|
248 |
}
|
249 |
-
filename, url = config_dict[model_cfg]
|
250 |
-
if not os.path.exists(filename):
|
251 |
-
print(f"Downloading {url}")
|
252 |
-
r = requests.get(url)
|
253 |
-
with open(filename, 'wb') as f:
|
254 |
-
f.write(r.content)
|
255 |
-
sam2_checkpoint = filename
|
256 |
-
|
257 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
258 |
-
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
|
259 |
-
|
260 |
-
image_encoder = sam2_model.image_encoder
|
261 |
-
image_encoder.eval()
|
262 |
-
|
263 |
-
from sam2.modeling.backbones.hieradet import do_pool
|
264 |
-
from sam2.modeling.backbones.utils import window_partition, window_unpartition
|
265 |
-
def new_forward(self, x: torch.Tensor) -> torch.Tensor:
|
266 |
-
shortcut = x # B, H, W, C
|
267 |
-
x = self.norm1(x)
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
|
273 |
-
# Window partition
|
274 |
-
window_size = self.window_size
|
275 |
-
if window_size > 0:
|
276 |
-
H, W = x.shape[1], x.shape[2]
|
277 |
-
x, pad_hw = window_partition(x, window_size)
|
278 |
-
|
279 |
-
# Window Attention + Q Pooling (if stage change)
|
280 |
-
x = self.attn(x)
|
281 |
-
if self.q_stride:
|
282 |
-
# Shapes have changed due to Q pooling
|
283 |
-
window_size = self.window_size // self.q_stride[0]
|
284 |
-
H, W = shortcut.shape[1:3]
|
285 |
-
|
286 |
-
pad_h = (window_size - H % window_size) % window_size
|
287 |
-
pad_w = (window_size - W % window_size) % window_size
|
288 |
-
pad_hw = (H + pad_h, W + pad_w)
|
289 |
-
|
290 |
-
# Reverse window partition
|
291 |
-
if self.window_size > 0:
|
292 |
-
x = window_unpartition(x, window_size, pad_hw, (H, W))
|
293 |
-
|
294 |
-
self.attn_output = x.clone()
|
295 |
-
|
296 |
-
x = shortcut + self.drop_path(x)
|
297 |
-
# MLP
|
298 |
-
mlp_out = self.mlp(self.norm2(x))
|
299 |
-
self.mlp_output = mlp_out.clone()
|
300 |
-
x = x + self.drop_path(mlp_out)
|
301 |
-
self.block_output = x.clone()
|
302 |
-
return x
|
303 |
-
|
304 |
-
setattr(image_encoder.trunk.blocks[0].__class__, 'forward', new_forward)
|
305 |
-
|
306 |
-
self.image_encoder = image_encoder
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
@torch.no_grad()
|
311 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
312 |
-
output = self.image_encoder(x)
|
313 |
-
attn_outputs, mlp_outputs, block_outputs = [], [], []
|
314 |
-
for block in self.image_encoder.trunk.blocks:
|
315 |
-
attn_outputs.append(block.attn_output)
|
316 |
-
mlp_outputs.append(block.mlp_output)
|
317 |
-
block_outputs.append(block.block_output)
|
318 |
-
return attn_outputs, mlp_outputs, block_outputs
|
319 |
-
|
320 |
-
|
321 |
-
MODEL_DICT["SAM2(sam2_hiera_b+)"] = SAM2(model_cfg='sam2_hiera_b+')
|
322 |
-
MODEL_DICT["SAM2(sam2_hiera_t)"] = SAM2(model_cfg='sam2_hiera_t')
|
323 |
|
324 |
class DiNOv2(torch.nn.Module):
|
325 |
-
def __init__(self, ver="dinov2_vitb14_reg"):
|
326 |
super().__init__()
|
327 |
self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver)
|
328 |
self.dinov2.requires_grad_(False)
|
329 |
self.dinov2.eval()
|
|
|
330 |
|
331 |
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
|
332 |
def attn_residual_func(x):
|
@@ -337,20 +354,20 @@ class DiNOv2(torch.nn.Module):
|
|
337 |
|
338 |
attn_output = attn_residual_func(x)
|
339 |
|
340 |
-
hw = np.sqrt(attn_output.shape[1] -
|
341 |
self.attn_output = rearrange(
|
342 |
-
attn_output.clone()[:,
|
343 |
)
|
344 |
|
345 |
x = x + attn_output
|
346 |
mlp_output = ffn_residual_func(x)
|
347 |
self.mlp_output = rearrange(
|
348 |
-
mlp_output.clone()[:,
|
349 |
)
|
350 |
x = x + mlp_output
|
351 |
block_output = x
|
352 |
self.block_output = rearrange(
|
353 |
-
block_output.clone()[:,
|
354 |
)
|
355 |
return x
|
356 |
|
@@ -370,10 +387,64 @@ class DiNOv2(torch.nn.Module):
|
|
370 |
attn_outputs = torch.stack(attn_outputs)
|
371 |
mlp_outputs = torch.stack(mlp_outputs)
|
372 |
block_outputs = torch.stack(block_outputs)
|
373 |
-
return
|
|
|
|
|
|
|
|
|
374 |
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
|
376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
378 |
def resample_position_embeddings(embeddings, h, w):
|
379 |
cls_embeddings = embeddings[0]
|
@@ -385,87 +456,264 @@ def resample_position_embeddings(embeddings, h, w):
|
|
385 |
embeddings = torch.cat([cls_embeddings.unsqueeze(0), patch_embeddings], dim=0)
|
386 |
return embeddings
|
387 |
|
388 |
-
class CLIP(torch.nn.Module):
|
389 |
-
|
390 |
-
|
391 |
|
392 |
-
|
393 |
|
394 |
-
|
395 |
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
|
402 |
-
# processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
403 |
-
self.model = model.eval()
|
404 |
-
|
405 |
def new_forward(
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
)
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
self.attn_output =
|
424 |
-
|
425 |
-
)
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
hidden_states = self.mlp(hidden_states)
|
431 |
-
self.mlp_output = rearrange(
|
432 |
-
hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
|
433 |
-
)
|
434 |
-
|
435 |
-
hidden_states = residual + hidden_states
|
436 |
-
|
437 |
-
outputs = (hidden_states,)
|
438 |
-
|
439 |
-
if output_attentions:
|
440 |
-
outputs += (attn_weights,)
|
441 |
-
|
442 |
-
self.block_output = rearrange(
|
443 |
-
hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
|
444 |
-
)
|
445 |
-
return outputs
|
446 |
|
447 |
-
setattr(
|
448 |
-
self.model.vision_model.encoder.layers[0].__class__, "forward", new_forward
|
449 |
-
)
|
450 |
|
451 |
-
|
|
|
|
|
|
|
|
|
452 |
def forward(self, x):
|
453 |
-
|
454 |
-
out = self.model.vision_model(x)
|
455 |
-
|
456 |
attn_outputs, mlp_outputs, block_outputs = [], [], []
|
457 |
-
for
|
458 |
-
attn_outputs.append(
|
459 |
-
mlp_outputs.append(
|
460 |
-
block_outputs.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
467 |
|
468 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
469 |
|
470 |
|
471 |
class MAE(timm.models.vision_transformer.VisionTransformer):
|
@@ -492,10 +740,10 @@ class MAE(timm.models.vision_transformer.VisionTransformer):
|
|
492 |
|
493 |
# resample the patch embeddings to 56x56, take 896x896 input
|
494 |
pos_embed = self.pos_embed[0]
|
495 |
-
pos_embed = resample_position_embeddings(pos_embed,
|
496 |
self.pos_embed = nn.Parameter(pos_embed.unsqueeze(0))
|
497 |
-
self.img_size = (
|
498 |
-
self.patch_embed.img_size = (
|
499 |
|
500 |
self.requires_grad_(False)
|
501 |
self.eval()
|
@@ -519,45 +767,105 @@ class MAE(timm.models.vision_transformer.VisionTransformer):
|
|
519 |
x = rearrange(x, "b (h w) c -> b h w c", h=hw)
|
520 |
return x
|
521 |
|
522 |
-
|
523 |
-
|
524 |
block_outputs = [remove_cls_and_reshape(block.saved_block_output) for block in self.blocks]
|
525 |
-
return
|
|
|
|
|
|
|
|
|
|
|
526 |
|
|
|
|
|
|
|
527 |
|
528 |
-
|
|
|
|
|
529 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
530 |
|
531 |
-
|
|
|
532 |
use_cuda = torch.cuda.is_available()
|
533 |
|
534 |
-
resolution = (1024, 1024)
|
535 |
-
resolution_dict = {
|
536 |
-
"DiNO(dinov2_vitb14_reg)": (896, 896),
|
537 |
-
'CLIP(openai/clip-vit-base-patch16)': (896, 896),
|
538 |
-
'MAE(vit_base)': (896, 896),
|
539 |
-
}
|
540 |
-
if model_name in resolution_dict:
|
541 |
-
resolution = resolution_dict[model_name]
|
542 |
-
|
543 |
-
model = MODEL_DICT[model_name]
|
544 |
-
|
545 |
if use_cuda:
|
546 |
model = model.cuda()
|
547 |
|
|
|
|
|
548 |
outputs = []
|
549 |
-
for
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
"mlp": mlp_output,
|
556 |
-
"block": block_output,
|
557 |
-
}
|
558 |
-
out = out_dict[node_type]
|
559 |
out = out[layer]
|
560 |
-
|
|
|
|
|
561 |
outputs = torch.cat(outputs, dim=0)
|
562 |
|
563 |
return outputs
|
|
|
12 |
|
13 |
import gradio as gr
|
14 |
|
15 |
+
from functools import partial
|
16 |
+
|
17 |
MODEL_DICT = {}
|
18 |
+
LAYER_DICT = {}
|
19 |
+
RES_DICT = {}
|
20 |
|
21 |
+
class SAM2(nn.Module):
|
22 |
+
|
23 |
+
def __init__(self, model_cfg='sam2_hiera_b+',):
|
24 |
+
super().__init__()
|
25 |
+
|
26 |
+
try:
|
27 |
+
from sam2.build_sam import build_sam2
|
28 |
+
except ImportError:
|
29 |
+
print("Please install segment_anything_2 from https://github.com/facebookresearch/segment-anything-2.git")
|
30 |
+
return
|
31 |
+
|
32 |
+
config_dict = {
|
33 |
+
'sam2_hiera_l': ("sam2_hiera_large.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt"),
|
34 |
+
'sam2_hiera_b+': ("sam2_hiera_base_plus.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_base_plus.pt"),
|
35 |
+
'sam2_hiera_s': ("sam2_hiera_small.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_small.pt"),
|
36 |
+
'sam2_hiera_t': ("sam2_hiera_tiny.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt"),
|
37 |
+
}
|
38 |
+
filename, url = config_dict[model_cfg]
|
39 |
+
if not os.path.exists(filename):
|
40 |
+
print(f"Downloading {url}")
|
41 |
+
r = requests.get(url)
|
42 |
+
with open(filename, 'wb') as f:
|
43 |
+
f.write(r.content)
|
44 |
+
sam2_checkpoint = filename
|
45 |
+
|
46 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
47 |
+
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
|
48 |
+
|
49 |
+
image_encoder = sam2_model.image_encoder
|
50 |
+
image_encoder.eval()
|
51 |
+
|
52 |
+
from sam2.modeling.backbones.hieradet import do_pool
|
53 |
+
from sam2.modeling.backbones.utils import window_partition, window_unpartition
|
54 |
+
def new_forward(self, x: torch.Tensor) -> torch.Tensor:
|
55 |
+
shortcut = x # B, H, W, C
|
56 |
+
x = self.norm1(x)
|
57 |
+
|
58 |
+
# Skip connection
|
59 |
+
if self.dim != self.dim_out:
|
60 |
+
shortcut = do_pool(self.proj(x), self.pool)
|
61 |
+
|
62 |
+
# Window partition
|
63 |
+
window_size = self.window_size
|
64 |
+
if window_size > 0:
|
65 |
+
H, W = x.shape[1], x.shape[2]
|
66 |
+
x, pad_hw = window_partition(x, window_size)
|
67 |
+
|
68 |
+
# Window Attention + Q Pooling (if stage change)
|
69 |
+
x = self.attn(x)
|
70 |
+
if self.q_stride:
|
71 |
+
# Shapes have changed due to Q pooling
|
72 |
+
window_size = self.window_size // self.q_stride[0]
|
73 |
+
H, W = shortcut.shape[1:3]
|
74 |
+
|
75 |
+
pad_h = (window_size - H % window_size) % window_size
|
76 |
+
pad_w = (window_size - W % window_size) % window_size
|
77 |
+
pad_hw = (H + pad_h, W + pad_w)
|
78 |
+
|
79 |
+
# Reverse window partition
|
80 |
+
if self.window_size > 0:
|
81 |
+
x = window_unpartition(x, window_size, pad_hw, (H, W))
|
82 |
+
|
83 |
+
self.attn_output = x.clone()
|
84 |
+
|
85 |
+
x = shortcut + self.drop_path(x)
|
86 |
+
# MLP
|
87 |
+
mlp_out = self.mlp(self.norm2(x))
|
88 |
+
self.mlp_output = mlp_out.clone()
|
89 |
+
x = x + self.drop_path(mlp_out)
|
90 |
+
self.block_output = x.clone()
|
91 |
+
return x
|
92 |
+
|
93 |
+
setattr(image_encoder.trunk.blocks[0].__class__, 'forward', new_forward)
|
94 |
+
|
95 |
+
self.image_encoder = image_encoder
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
@torch.no_grad()
|
100 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
101 |
+
output = self.image_encoder(x)
|
102 |
+
attn_outputs, mlp_outputs, block_outputs = [], [], []
|
103 |
+
for block in self.image_encoder.trunk.blocks:
|
104 |
+
attn_outputs.append(block.attn_output)
|
105 |
+
mlp_outputs.append(block.mlp_output)
|
106 |
+
block_outputs.append(block.block_output)
|
107 |
+
return {
|
108 |
+
'attn': attn_outputs,
|
109 |
+
'mlp': mlp_outputs,
|
110 |
+
'block': block_outputs
|
111 |
+
}
|
112 |
+
|
113 |
+
MODEL_DICT["SAM2(sam2_hiera_t)"] = partial(SAM2, model_cfg='sam2_hiera_t')
|
114 |
+
LAYER_DICT["SAM2(sam2_hiera_t)"] = 12
|
115 |
+
RES_DICT["SAM2(sam2_hiera_t)"] = (1024, 1024)
|
116 |
+
MODEL_DICT["SAM2(sam2_hiera_s)"] = partial(SAM2, model_cfg='sam2_hiera_s')
|
117 |
+
LAYER_DICT["SAM2(sam2_hiera_s)"] = 16
|
118 |
+
RES_DICT["SAM2(sam2_hiera_s)"] = (1024, 1024)
|
119 |
+
MODEL_DICT["SAM2(sam2_hiera_b+)"] = partial(SAM2, model_cfg='sam2_hiera_b+')
|
120 |
+
LAYER_DICT["SAM2(sam2_hiera_b+)"] = 24
|
121 |
+
RES_DICT["SAM2(sam2_hiera_b+)"] = (1024, 1024)
|
122 |
+
MODEL_DICT["SAM2(sam2_hiera_l)"] = partial(SAM2, model_cfg='sam2_hiera_l')
|
123 |
+
LAYER_DICT["SAM2(sam2_hiera_l)"] = 48
|
124 |
+
RES_DICT["SAM2(sam2_hiera_l)"] = (1024, 1024)
|
125 |
+
|
126 |
+
|
127 |
+
class SAM(torch.nn.Module):
|
128 |
+
def __init__(self, **kwargs):
|
129 |
+
super().__init__(**kwargs)
|
130 |
+
from segment_anything import sam_model_registry, SamPredictor
|
131 |
+
from segment_anything.modeling.sam import Sam
|
132 |
+
|
133 |
+
checkpoint = "sam_vit_b_01ec64.pth"
|
134 |
+
if not os.path.exists(checkpoint):
|
135 |
+
checkpoint_url = (
|
136 |
+
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
|
137 |
+
)
|
138 |
+
import requests
|
139 |
+
|
140 |
+
r = requests.get(checkpoint_url)
|
141 |
+
with open(checkpoint, "wb") as f:
|
142 |
+
f.write(r.content)
|
143 |
+
|
144 |
+
sam: Sam = sam_model_registry["vit_b"](checkpoint=checkpoint)
|
145 |
+
|
146 |
+
from segment_anything.modeling.image_encoder import (
|
147 |
+
window_partition,
|
148 |
+
window_unpartition,
|
149 |
+
)
|
150 |
+
|
151 |
+
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
|
152 |
+
shortcut = x
|
153 |
+
x = self.norm1(x)
|
154 |
+
# Window partition
|
155 |
+
if self.window_size > 0:
|
156 |
+
H, W = x.shape[1], x.shape[2]
|
157 |
+
x, pad_hw = window_partition(x, self.window_size)
|
158 |
+
|
159 |
+
x = self.attn(x)
|
160 |
+
# Reverse window partition
|
161 |
+
if self.window_size > 0:
|
162 |
+
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
163 |
+
self.attn_output = x.clone()
|
164 |
+
|
165 |
+
x = shortcut + x
|
166 |
+
mlp_outout = self.mlp(self.norm2(x))
|
167 |
+
self.mlp_output = mlp_outout.clone()
|
168 |
+
x = x + mlp_outout
|
169 |
+
self.block_output = x.clone()
|
170 |
+
|
171 |
+
return x
|
172 |
+
|
173 |
+
setattr(sam.image_encoder.blocks[0].__class__, "forward", new_block_forward)
|
174 |
+
|
175 |
+
self.image_encoder = sam.image_encoder
|
176 |
+
self.image_encoder.eval()
|
177 |
+
|
178 |
+
@torch.no_grad()
|
179 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
180 |
+
with torch.no_grad():
|
181 |
+
x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
|
182 |
+
out = self.image_encoder(x)
|
183 |
+
|
184 |
+
attn_outputs, mlp_outputs, block_outputs = [], [], []
|
185 |
+
for i, blk in enumerate(self.image_encoder.blocks):
|
186 |
+
attn_outputs.append(blk.attn_output)
|
187 |
+
mlp_outputs.append(blk.mlp_output)
|
188 |
+
block_outputs.append(blk.block_output)
|
189 |
+
attn_outputs = torch.stack(attn_outputs)
|
190 |
+
mlp_outputs = torch.stack(mlp_outputs)
|
191 |
+
block_outputs = torch.stack(block_outputs)
|
192 |
+
return {
|
193 |
+
'attn': attn_outputs,
|
194 |
+
'mlp': mlp_outputs,
|
195 |
+
'block': block_outputs
|
196 |
+
}
|
197 |
+
|
198 |
+
MODEL_DICT["SAM(sam_vit_b)"] = partial(SAM)
|
199 |
+
LAYER_DICT["SAM(sam_vit_b)"] = 12
|
200 |
+
RES_DICT["SAM(sam_vit_b)"] = (1024, 1024)
|
201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
class MobileSAM(nn.Module):
|
204 |
def __init__(self, **kwargs):
|
|
|
326 |
attn_outputs.append(blk.attn_output)
|
327 |
mlp_outputs.append(blk.mlp_output)
|
328 |
block_outputs.append(blk.block_output)
|
329 |
+
return {
|
330 |
+
'attn': attn_outputs,
|
331 |
+
'mlp': mlp_outputs,
|
332 |
+
'block': block_outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
+
MODEL_DICT["MobileSAM"] = partial(MobileSAM)
|
336 |
+
LAYER_DICT["MobileSAM"] = 12
|
337 |
+
RES_DICT["MobileSAM"] = (1024, 1024)
|
338 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
|
340 |
class DiNOv2(torch.nn.Module):
|
341 |
+
def __init__(self, ver="dinov2_vitb14_reg", num_reg=5):
|
342 |
super().__init__()
|
343 |
self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver)
|
344 |
self.dinov2.requires_grad_(False)
|
345 |
self.dinov2.eval()
|
346 |
+
self.num_reg = num_reg
|
347 |
|
348 |
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
|
349 |
def attn_residual_func(x):
|
|
|
354 |
|
355 |
attn_output = attn_residual_func(x)
|
356 |
|
357 |
+
hw = np.sqrt(attn_output.shape[1] - num_reg).astype(int)
|
358 |
self.attn_output = rearrange(
|
359 |
+
attn_output.clone()[:, num_reg:], "b (h w) c -> b h w c", h=hw
|
360 |
)
|
361 |
|
362 |
x = x + attn_output
|
363 |
mlp_output = ffn_residual_func(x)
|
364 |
self.mlp_output = rearrange(
|
365 |
+
mlp_output.clone()[:, num_reg:], "b (h w) c -> b h w c", h=hw
|
366 |
)
|
367 |
x = x + mlp_output
|
368 |
block_output = x
|
369 |
self.block_output = rearrange(
|
370 |
+
block_output.clone()[:, num_reg:], "b (h w) c -> b h w c", h=hw
|
371 |
)
|
372 |
return x
|
373 |
|
|
|
387 |
attn_outputs = torch.stack(attn_outputs)
|
388 |
mlp_outputs = torch.stack(mlp_outputs)
|
389 |
block_outputs = torch.stack(block_outputs)
|
390 |
+
return {
|
391 |
+
'attn': attn_outputs,
|
392 |
+
'mlp': mlp_outputs,
|
393 |
+
'block': block_outputs
|
394 |
+
}
|
395 |
|
396 |
+
MODEL_DICT["DiNOv2reg(dinov2_vitb14_reg)"] = partial(DiNOv2, ver="dinov2_vitb14_reg", num_reg=5)
|
397 |
+
LAYER_DICT["DiNOv2reg(dinov2_vitb14_reg)"] = 12
|
398 |
+
RES_DICT["DiNOv2reg(dinov2_vitb14_reg)"] = (672, 672)
|
399 |
+
MODEL_DICT["DiNOv2(dinov2_vitb14)"] = partial(DiNOv2, ver="dinov2_vitb14", num_reg=1)
|
400 |
+
LAYER_DICT["DiNOv2(dinov2_vitb14)"] = 12
|
401 |
+
RES_DICT["DiNOv2(dinov2_vitb14)"] = (672, 672)
|
402 |
|
403 |
+
class DiNO(nn.Module):
|
404 |
+
def __init__(self, ver="dino_vitb8"):
|
405 |
+
super().__init__()
|
406 |
+
model = torch.hub.load('facebookresearch/dino:main', ver)
|
407 |
+
model = model.eval()
|
408 |
+
|
409 |
+
def remove_cls_and_reshape(x):
|
410 |
+
x = x.clone()
|
411 |
+
x = x[:, 1:]
|
412 |
+
hw = np.sqrt(x.shape[1]).astype(int)
|
413 |
+
x = rearrange(x, "b (h w) c -> b h w c", h=hw)
|
414 |
+
return x
|
415 |
+
|
416 |
+
def new_forward(self, x, return_attention=False):
|
417 |
+
y, attn = self.attn(self.norm1(x))
|
418 |
+
self.attn_output = remove_cls_and_reshape(y.clone())
|
419 |
+
if return_attention:
|
420 |
+
return attn
|
421 |
+
x = x + self.drop_path(y)
|
422 |
+
mlp_output = self.mlp(self.norm2(x))
|
423 |
+
self.mlp_output = remove_cls_and_reshape(mlp_output.clone())
|
424 |
+
x = x + self.drop_path(mlp_output)
|
425 |
+
self.block_output = remove_cls_and_reshape(x.clone())
|
426 |
+
return x
|
427 |
+
|
428 |
+
setattr(model.blocks[0].__class__, "forward", new_forward)
|
429 |
+
|
430 |
+
self.model = model
|
431 |
+
self.model.eval()
|
432 |
+
self.model.requires_grad_(False)
|
433 |
+
|
434 |
+
def forward(self, x):
|
435 |
+
out = self.model(x)
|
436 |
+
attn_outputs = [block.attn_output for block in self.model.blocks]
|
437 |
+
mlp_outputs = [block.mlp_output for block in self.model.blocks]
|
438 |
+
block_outputs = [block.block_output for block in self.model.blocks]
|
439 |
+
return {
|
440 |
+
'attn': attn_outputs,
|
441 |
+
'mlp': mlp_outputs,
|
442 |
+
'block': block_outputs
|
443 |
+
}
|
444 |
+
|
445 |
+
MODEL_DICT["DiNO(dino_vitb8)"] = partial(DiNO)
|
446 |
+
LAYER_DICT["DiNO(dino_vitb8)"] = 12
|
447 |
+
RES_DICT["DiNO(dino_vitb8)"] = (448, 448)
|
448 |
|
449 |
def resample_position_embeddings(embeddings, h, w):
|
450 |
cls_embeddings = embeddings[0]
|
|
|
456 |
embeddings = torch.cat([cls_embeddings.unsqueeze(0), patch_embeddings], dim=0)
|
457 |
return embeddings
|
458 |
|
459 |
+
# class CLIP(torch.nn.Module):
|
460 |
+
# def __init__(self, ver="openai/clip-vit-base-patch16"):
|
461 |
+
# super().__init__()
|
462 |
|
463 |
+
# from transformers import CLIPProcessor, CLIPModel
|
464 |
|
465 |
+
# model = CLIPModel.from_pretrained(ver)
|
466 |
|
467 |
+
# # resample the patch embeddings to 56x56, take 896x896 input
|
468 |
+
# embeddings = model.vision_model.embeddings.position_embedding.weight
|
469 |
+
# embeddings = resample_position_embeddings(embeddings, 42, 42)
|
470 |
+
# model.vision_model.embeddings.position_embedding.weight = nn.Parameter(embeddings)
|
471 |
+
# model.vision_model.embeddings.position_ids = torch.arange(0, 1+56*56)
|
472 |
+
|
473 |
+
# # processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
474 |
+
# self.model = model.eval()
|
475 |
+
|
476 |
+
# def new_forward(
|
477 |
+
# self,
|
478 |
+
# hidden_states: torch.Tensor,
|
479 |
+
# attention_mask: torch.Tensor,
|
480 |
+
# causal_attention_mask: torch.Tensor,
|
481 |
+
# output_attentions: Optional[bool] = False,
|
482 |
+
# ) -> Tuple[torch.FloatTensor]:
|
483 |
+
|
484 |
+
# residual = hidden_states
|
485 |
+
|
486 |
+
# hidden_states = self.layer_norm1(hidden_states)
|
487 |
+
# hidden_states, attn_weights = self.self_attn(
|
488 |
+
# hidden_states=hidden_states,
|
489 |
+
# attention_mask=attention_mask,
|
490 |
+
# causal_attention_mask=causal_attention_mask,
|
491 |
+
# output_attentions=output_attentions,
|
492 |
+
# )
|
493 |
+
# hw = np.sqrt(hidden_states.shape[1] - 1).astype(int)
|
494 |
+
# self.attn_output = rearrange(
|
495 |
+
# hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
|
496 |
+
# )
|
497 |
+
# hidden_states = residual + hidden_states
|
498 |
+
|
499 |
+
# residual = hidden_states
|
500 |
+
# hidden_states = self.layer_norm2(hidden_states)
|
501 |
+
# hidden_states = self.mlp(hidden_states)
|
502 |
+
# self.mlp_output = rearrange(
|
503 |
+
# hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
|
504 |
+
# )
|
505 |
+
|
506 |
+
# hidden_states = residual + hidden_states
|
507 |
+
|
508 |
+
# outputs = (hidden_states,)
|
509 |
+
|
510 |
+
# if output_attentions:
|
511 |
+
# outputs += (attn_weights,)
|
512 |
+
|
513 |
+
# self.block_output = rearrange(
|
514 |
+
# hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
|
515 |
+
# )
|
516 |
+
# return outputs
|
517 |
+
|
518 |
+
# setattr(
|
519 |
+
# self.model.vision_model.encoder.layers[0].__class__, "forward", new_forward
|
520 |
+
# )
|
521 |
+
|
522 |
+
# @torch.no_grad()
|
523 |
+
# def forward(self, x):
|
524 |
+
|
525 |
+
# out = self.model.vision_model(x)
|
526 |
+
|
527 |
+
# attn_outputs, mlp_outputs, block_outputs = [], [], []
|
528 |
+
# for i, blk in enumerate(self.model.vision_model.encoder.layers):
|
529 |
+
# attn_outputs.append(blk.attn_output)
|
530 |
+
# mlp_outputs.append(blk.mlp_output)
|
531 |
+
# block_outputs.append(blk.block_output)
|
532 |
+
|
533 |
+
# attn_outputs = torch.stack(attn_outputs)
|
534 |
+
# mlp_outputs = torch.stack(mlp_outputs)
|
535 |
+
# block_outputs = torch.stack(block_outputs)
|
536 |
+
# return attn_outputs, mlp_outputs, block_outputs
|
537 |
+
|
538 |
+
|
539 |
+
# MODEL_DICT["CLIP(openai/clip-vit-base-patch16)"] = partial(CLIP, ver="openai/clip-vit-base-patch16")
|
540 |
+
# LAYER_DICT["CLIP(openai/clip-vit-base-patch16)"] = 12
|
541 |
+
# RES_DICT["CLIP(openai/clip-vit-base-patch16)"] = (896, 896)
|
542 |
+
|
543 |
+
|
544 |
+
class OpenCLIPViT(nn.Module):
|
545 |
+
def __init__(self, version='ViT-B-16', pretrained='laion2b_s34b_b88k'):
|
546 |
+
super().__init__()
|
547 |
+
try:
|
548 |
+
import open_clip
|
549 |
+
except ImportError:
|
550 |
+
print("Please install open_clip to use this class.")
|
551 |
+
return
|
552 |
+
|
553 |
+
model, _, _ = open_clip.create_model_and_transforms(version, pretrained=pretrained)
|
554 |
+
|
555 |
+
positional_embedding = resample_position_embeddings(model.visual.positional_embedding, 42, 42)
|
556 |
+
model.visual.positional_embedding = nn.Parameter(positional_embedding)
|
557 |
|
|
|
|
|
|
|
558 |
def new_forward(
|
559 |
+
self,
|
560 |
+
q_x: torch.Tensor,
|
561 |
+
k_x: Optional[torch.Tensor] = None,
|
562 |
+
v_x: Optional[torch.Tensor] = None,
|
563 |
+
attn_mask: Optional[torch.Tensor] = None,
|
564 |
+
):
|
565 |
+
def remove_cls_and_reshape(x):
|
566 |
+
x = x.clone()
|
567 |
+
x = x[1:]
|
568 |
+
hw = np.sqrt(x.shape[0]).astype(int)
|
569 |
+
x = rearrange(x, "(h w) b c -> b h w c", h=hw)
|
570 |
+
return x
|
571 |
+
|
572 |
+
k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
|
573 |
+
v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None
|
574 |
+
|
575 |
+
attn_output = self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask)
|
576 |
+
self.attn_output = remove_cls_and_reshape(attn_output.clone())
|
577 |
+
x = q_x + self.ls_1(attn_output)
|
578 |
+
mlp_output = self.mlp(self.ln_2(x))
|
579 |
+
self.mlp_output = remove_cls_and_reshape(mlp_output.clone())
|
580 |
+
x = x + self.ls_2(mlp_output)
|
581 |
+
self.block_output = remove_cls_and_reshape(x.clone())
|
582 |
+
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
583 |
|
|
|
|
|
|
|
584 |
|
585 |
+
setattr(model.visual.transformer.resblocks[0].__class__, "forward", new_forward)
|
586 |
+
|
587 |
+
self.model = model
|
588 |
+
self.model.eval()
|
589 |
+
|
590 |
def forward(self, x):
|
591 |
+
out = self.model(x)
|
|
|
|
|
592 |
attn_outputs, mlp_outputs, block_outputs = [], [], []
|
593 |
+
for block in self.model.visual.transformer.resblocks:
|
594 |
+
attn_outputs.append(block.attn_output)
|
595 |
+
mlp_outputs.append(block.mlp_output)
|
596 |
+
block_outputs.append(block.block_output)
|
597 |
+
return {
|
598 |
+
'attn': attn_outputs,
|
599 |
+
'mlp': mlp_outputs,
|
600 |
+
'block': block_outputs
|
601 |
+
}
|
602 |
+
|
603 |
+
MODEL_DICT["CLIP(ViT-B-16/openai)"] = partial(OpenCLIPViT, version='ViT-B-16', pretrained='openai')
|
604 |
+
LAYER_DICT["CLIP(ViT-B-16/openai)"] = 12
|
605 |
+
RES_DICT["CLIP(ViT-B-16/openai)"] = (672, 672)
|
606 |
+
MODEL_DICT["CLIP(ViT-B-16/laion2b_s34b_b88k)"] = partial(OpenCLIPViT, version='ViT-B-16', pretrained='laion2b_s34b_b88k')
|
607 |
+
LAYER_DICT["CLIP(ViT-B-16/laion2b_s34b_b88k)"] = 12
|
608 |
+
RES_DICT["CLIP(ViT-B-16/laion2b_s34b_b88k)"] = (672, 672)
|
609 |
+
|
610 |
+
class EVA02(nn.Module):
|
611 |
+
|
612 |
+
def __init__(self, **kwargs):
|
613 |
+
super().__init__(**kwargs)
|
614 |
+
|
615 |
+
model = timm.create_model(
|
616 |
+
'eva02_large_patch14_448.mim_m38m_ft_in22k_in1k',
|
617 |
+
pretrained=True,
|
618 |
+
num_classes=0, # remove classifier nn.Linear
|
619 |
+
)
|
620 |
+
model = model.eval()
|
621 |
|
622 |
+
def new_forward(self, x, rope: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None):
|
623 |
+
|
624 |
+
def remove_cls_and_reshape(x):
|
625 |
+
x = x.clone()
|
626 |
+
x = x[:, 1:]
|
627 |
+
hw = np.sqrt(x.shape[1]).astype(int)
|
628 |
+
x = rearrange(x, "b (h w) c -> b h w c", h=hw)
|
629 |
+
return x
|
630 |
+
|
631 |
+
if self.gamma_1 is None:
|
632 |
+
attn_output = self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask)
|
633 |
+
self.attn_output = remove_cls_and_reshape(attn_output.clone())
|
634 |
+
x = x + self.drop_path1(attn_output)
|
635 |
+
mlp_output = self.mlp(self.norm2(x))
|
636 |
+
self.mlp_output = remove_cls_and_reshape(mlp_output.clone())
|
637 |
+
x = x + self.drop_path2(mlp_output)
|
638 |
+
else:
|
639 |
+
attn_output = self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask)
|
640 |
+
self.attn_output = remove_cls_and_reshape(attn_output.clone())
|
641 |
+
x = x + self.drop_path1(self.gamma_1 * attn_output)
|
642 |
+
mlp_output = self.mlp(self.norm2(x))
|
643 |
+
self.mlp_output = remove_cls_and_reshape(mlp_output.clone())
|
644 |
+
x = x + self.drop_path2(self.gamma_2 * mlp_output)
|
645 |
+
self.block_output = remove_cls_and_reshape(x.clone())
|
646 |
+
return x
|
647 |
+
|
648 |
+
setattr(model.blocks[0].__class__, "forward", new_forward)
|
649 |
+
|
650 |
+
self.model = model
|
651 |
+
|
652 |
+
def forward(self, x):
|
653 |
+
out = self.model(x)
|
654 |
+
attn_outputs = [block.attn_output for block in self.model.blocks]
|
655 |
+
mlp_outputs = [block.mlp_output for block in self.model.blocks]
|
656 |
+
block_outputs = [block.block_output for block in self.model.blocks]
|
657 |
+
return {
|
658 |
+
'attn': attn_outputs,
|
659 |
+
'mlp': mlp_outputs,
|
660 |
+
'block': block_outputs
|
661 |
+
}
|
662 |
+
|
663 |
+
MODEL_DICT["EVA-CLIP(eva02_large_patch14_448)"] = partial(EVA02)
|
664 |
+
LAYER_DICT["EVA-CLIP(eva02_large_patch14_448)"] = 24
|
665 |
+
RES_DICT["EVA-CLIP(eva02_large_patch14_448)"] = (448, 448)
|
666 |
|
667 |
+
class CLIPConvnext(nn.Module):
|
668 |
+
def __init__(self):
|
669 |
+
super().__init__()
|
670 |
+
try:
|
671 |
+
import open_clip
|
672 |
+
except ImportError:
|
673 |
+
print("Please install open_clip to use this class.")
|
674 |
+
return
|
675 |
+
|
676 |
+
model, _, _ = open_clip.create_model_and_transforms('convnext_base_w_320', pretrained='laion_aesthetic_s13b_b82k')
|
677 |
+
|
678 |
+
def new_forward(self, x):
|
679 |
+
shortcut = x
|
680 |
+
x = self.conv_dw(x)
|
681 |
+
if self.use_conv_mlp:
|
682 |
+
x = self.norm(x)
|
683 |
+
x = self.mlp(x)
|
684 |
+
else:
|
685 |
+
x = x.permute(0, 2, 3, 1)
|
686 |
+
x = self.norm(x)
|
687 |
+
x = self.mlp(x)
|
688 |
+
x = x.permute(0, 3, 1, 2)
|
689 |
+
if self.gamma is not None:
|
690 |
+
x = x.mul(self.gamma.reshape(1, -1, 1, 1))
|
691 |
+
|
692 |
+
x = self.drop_path(x) + self.shortcut(shortcut)
|
693 |
+
self.block_output = rearrange(x.clone(), "b c h w -> b h w c")
|
694 |
+
return x
|
695 |
|
696 |
+
setattr(model.visual.trunk.stages[0].blocks[0].__class__, "forward", new_forward)
|
697 |
+
|
698 |
+
self.model = model
|
699 |
+
self.model.eval()
|
700 |
+
|
701 |
+
def forward(self, x):
|
702 |
+
out = self.model(x)
|
703 |
+
block_outputs = []
|
704 |
+
for stage in self.model.visual.trunk.stages:
|
705 |
+
for block in stage.blocks:
|
706 |
+
block_outputs.append(block.block_output)
|
707 |
+
return {
|
708 |
+
'attn': None,
|
709 |
+
'mlp': None,
|
710 |
+
'block': block_outputs
|
711 |
+
}
|
712 |
+
|
713 |
+
|
714 |
+
MODEL_DICT["CLIP(convnext_base_w_320/laion_aesthetic_s13b_b82k)"] = partial(CLIPConvnext)
|
715 |
+
LAYER_DICT["CLIP(convnext_base_w_320/laion_aesthetic_s13b_b82k)"] = 36
|
716 |
+
RES_DICT["CLIP(convnext_base_w_320/laion_aesthetic_s13b_b82k)"] = (960, 960)
|
717 |
|
718 |
|
719 |
class MAE(timm.models.vision_transformer.VisionTransformer):
|
|
|
740 |
|
741 |
# resample the patch embeddings to 56x56, take 896x896 input
|
742 |
pos_embed = self.pos_embed[0]
|
743 |
+
pos_embed = resample_position_embeddings(pos_embed, 42, 42)
|
744 |
self.pos_embed = nn.Parameter(pos_embed.unsqueeze(0))
|
745 |
+
self.img_size = (672, 672)
|
746 |
+
self.patch_embed.img_size = (672, 672)
|
747 |
|
748 |
self.requires_grad_(False)
|
749 |
self.eval()
|
|
|
767 |
x = rearrange(x, "b (h w) c -> b h w c", h=hw)
|
768 |
return x
|
769 |
|
770 |
+
attn_outputs = [remove_cls_and_reshape(block.saved_attn_node) for block in self.blocks]
|
771 |
+
mlp_outputs = [remove_cls_and_reshape(block.saved_mlp_node) for block in self.blocks]
|
772 |
block_outputs = [remove_cls_and_reshape(block.saved_block_output) for block in self.blocks]
|
773 |
+
return {
|
774 |
+
'attn': attn_outputs,
|
775 |
+
'mlp': mlp_outputs,
|
776 |
+
'block': block_outputs
|
777 |
+
}
|
778 |
+
|
779 |
|
780 |
+
MODEL_DICT["MAE(vit_base)"] = partial(MAE)
|
781 |
+
LAYER_DICT["MAE(vit_base)"] = 12
|
782 |
+
RES_DICT["MAE(vit_base)"] = (672, 672)
|
783 |
|
784 |
+
class ImageNet(nn.Module):
|
785 |
+
def __init__(self, **kwargs):
|
786 |
+
super().__init__(**kwargs)
|
787 |
|
788 |
+
model = timm.create_model(
|
789 |
+
'vit_base_patch16_224.augreg2_in21k_ft_in1k',
|
790 |
+
pretrained=True,
|
791 |
+
num_classes=0, # remove classifier nn.Linear
|
792 |
+
)
|
793 |
+
|
794 |
+
# resample the patch embeddings to 56x56, take 896x896 input
|
795 |
+
pos_embed = model.pos_embed[0]
|
796 |
+
pos_embed = resample_position_embeddings(pos_embed, 42, 42)
|
797 |
+
model.pos_embed = nn.Parameter(pos_embed.unsqueeze(0))
|
798 |
+
model.img_size = (672, 672)
|
799 |
+
model.patch_embed.img_size = (672, 672)
|
800 |
+
|
801 |
+
model.requires_grad_(False)
|
802 |
+
model.eval()
|
803 |
+
|
804 |
+
def forward(self, x):
|
805 |
+
self.saved_attn_node = self.ls1(self.attn(self.norm1(x)))
|
806 |
+
x = x + self.saved_attn_node.clone()
|
807 |
+
self.saved_mlp_node = self.ls2(self.mlp(self.norm2(x)))
|
808 |
+
x = x + self.saved_mlp_node.clone()
|
809 |
+
self.saved_block_output = x.clone()
|
810 |
+
return x
|
811 |
+
|
812 |
+
setattr(model.blocks[0].__class__, "forward", forward)
|
813 |
+
|
814 |
+
self.model = model
|
815 |
+
|
816 |
+
def forward(self, x):
|
817 |
+
out = self.model(x)
|
818 |
+
def remove_cls_and_reshape(x):
|
819 |
+
x = x.clone()
|
820 |
+
x = x[:, 1:]
|
821 |
+
hw = np.sqrt(x.shape[1]).astype(int)
|
822 |
+
x = rearrange(x, "b (h w) c -> b h w c", h=hw)
|
823 |
+
return x
|
824 |
+
|
825 |
+
attn_outputs = [remove_cls_and_reshape(block.saved_attn_node) for block in self.model.blocks]
|
826 |
+
mlp_outputs = [remove_cls_and_reshape(block.saved_mlp_node) for block in self.model.blocks]
|
827 |
+
block_outputs = [remove_cls_and_reshape(block.saved_block_output) for block in self.model.blocks]
|
828 |
+
return {
|
829 |
+
'attn': attn_outputs,
|
830 |
+
'mlp': mlp_outputs,
|
831 |
+
'block': block_outputs
|
832 |
+
}
|
833 |
+
|
834 |
+
MODEL_DICT["ImageNet(vit_base)"] = partial(ImageNet)
|
835 |
+
LAYER_DICT["ImageNet(vit_base)"] = 12
|
836 |
+
RES_DICT["ImageNet(vit_base)"] = (672, 672)
|
837 |
+
|
838 |
+
def download_all_models():
|
839 |
+
for model_name in MODEL_DICT:
|
840 |
+
print(f"Downloading {model_name}")
|
841 |
+
model = MODEL_DICT[model_name]()
|
842 |
+
|
843 |
+
def get_all_model_names():
|
844 |
+
return list(MODEL_DICT.keys())
|
845 |
+
|
846 |
+
def get_model(model_name):
|
847 |
+
return MODEL_DICT[model_name]()
|
848 |
|
849 |
+
@torch.no_grad()
|
850 |
+
def extract_features(images, model, model_name, node_type, layer, batch_size=8):
|
851 |
use_cuda = torch.cuda.is_available()
|
852 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
853 |
if use_cuda:
|
854 |
model = model.cuda()
|
855 |
|
856 |
+
chunked_idxs = torch.split(torch.arange(images.shape[0]), batch_size)
|
857 |
+
|
858 |
outputs = []
|
859 |
+
for idxs in chunked_idxs:
|
860 |
+
inp = images[idxs]
|
861 |
+
if use_cuda:
|
862 |
+
inp = inp.cuda()
|
863 |
+
out = model(inp) # {'attn': [B, H, W, C], 'mlp': [B, H, W, C], 'block': [B, H, W, C]}
|
864 |
+
out = out[node_type]
|
|
|
|
|
|
|
|
|
865 |
out = out[layer]
|
866 |
+
# normalize
|
867 |
+
out = F.normalize(out, dim=-1)
|
868 |
+
outputs.append(out.cpu().float())
|
869 |
outputs = torch.cat(outputs, dim=0)
|
870 |
|
871 |
return outputs
|
requirements.txt
CHANGED
@@ -11,4 +11,5 @@ pillow==9.4.0
|
|
11 |
SAM-2 @ git+https://github.com/huzeyann/segment-anything-2.git
|
12 |
segment-anything @ git+https://github.com/facebookresearch/segment-anything.git@6fdee8f
|
13 |
mobile-sam @ git+https://github.com/ChaoningZhang/MobileSAM.git@c12dd83
|
14 |
-
timm
|
|
|
|
11 |
SAM-2 @ git+https://github.com/huzeyann/segment-anything-2.git
|
12 |
segment-anything @ git+https://github.com/facebookresearch/segment-anything.git@6fdee8f
|
13 |
mobile-sam @ git+https://github.com/ChaoningZhang/MobileSAM.git@c12dd83
|
14 |
+
timm
|
15 |
+
open-clip-torch==2.20.0
|