Spaces:
Running
on
Zero
Running
on
Zero
update tabs
Browse files- app.py +284 -31
- requirements.txt +1 -0
app.py
CHANGED
@@ -8,6 +8,7 @@ if USE_SPACES: # huggingface ZeroGPU
|
|
8 |
except ImportError:
|
9 |
USE_SPACES = False # run on standard GPU
|
10 |
|
|
|
11 |
import gradio as gr
|
12 |
|
13 |
import torch
|
@@ -34,6 +35,7 @@ def compute_ncut(
|
|
34 |
n_neighbors=150,
|
35 |
min_dist=0.1,
|
36 |
sampling_method="fps",
|
|
|
37 |
):
|
38 |
logging_str = ""
|
39 |
|
@@ -52,6 +54,7 @@ def compute_ncut(
|
|
52 |
affinity_focal_gamma=affinity_focal_gamma,
|
53 |
knn=knn_ncut,
|
54 |
sample_method=sampling_method,
|
|
|
55 |
).fit_transform(features.reshape(-1, features.shape[-1]))
|
56 |
# print(f"NCUT time: {time.time() - start:.2f}s")
|
57 |
logging_str += f"NCUT time: {time.time() - start:.2f}s\n"
|
@@ -70,7 +73,7 @@ def compute_ncut(
|
|
70 |
logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n"
|
71 |
|
72 |
rgb = rgb.reshape(features.shape[:3] + (3,))
|
73 |
-
return rgb, logging_str
|
74 |
|
75 |
|
76 |
def dont_use_too_much_green(image_rgb):
|
@@ -90,6 +93,48 @@ def to_pil_images(images):
|
|
90 |
]
|
91 |
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg']
|
94 |
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg']
|
95 |
default_outputs_independent = ['./images/ncut_0_independent.jpg', './images/ncut_1_independent.jpg', './images/ncut_2_independent.jpg', './images/ncut_3_independent.jpg', './images/ncut_5_independent.jpg']
|
@@ -99,6 +144,8 @@ downscaled_outputs = ['./images/ncut_0_small.jpg', './images/ncut_1_small.jpg',
|
|
99 |
|
100 |
example_items = downscaled_images[:3] + downscaled_outputs[:3]
|
101 |
|
|
|
|
|
102 |
def ncut_run(
|
103 |
images,
|
104 |
model_name="SAM(sam_vit_b)",
|
@@ -116,6 +163,11 @@ def ncut_run(
|
|
116 |
min_dist=0.1,
|
117 |
sampling_method="fps",
|
118 |
old_school_ncut=False,
|
|
|
|
|
|
|
|
|
|
|
119 |
):
|
120 |
logging_str = ""
|
121 |
if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
|
@@ -137,29 +189,38 @@ def ncut_run(
|
|
137 |
# print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
|
138 |
logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
|
139 |
|
140 |
-
if
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
if old_school_ncut: # individual images
|
158 |
logging_str += "Running NCut for each image independently\n"
|
159 |
rgb = []
|
160 |
for i_image in range(features.shape[0]):
|
161 |
feature = features[i_image]
|
162 |
-
_rgb, _logging_str = compute_ncut(
|
163 |
feature[None],
|
164 |
num_eig=num_eig,
|
165 |
num_sample_ncut=num_sample_ncut,
|
@@ -175,7 +236,34 @@ def ncut_run(
|
|
175 |
)
|
176 |
logging_str += _logging_str
|
177 |
rgb.append(_rgb[0])
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
def _ncut_run(*args, **kwargs):
|
181 |
try:
|
@@ -214,6 +302,19 @@ if not USE_SPACES:
|
|
214 |
def super_duper_long_run(*args, **kwargs):
|
215 |
return _ncut_run(*args, **kwargs)
|
216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
def run_fn(
|
218 |
images,
|
219 |
model_name="SAM(sam_vit_b)",
|
@@ -231,11 +332,22 @@ def run_fn(
|
|
231 |
min_dist=0.1,
|
232 |
sampling_method="fps",
|
233 |
old_school_ncut=False,
|
|
|
|
|
|
|
|
|
|
|
234 |
):
|
|
|
235 |
if images is None:
|
236 |
gr.Warning("No images selected.")
|
237 |
return [], "No images selected."
|
238 |
|
|
|
|
|
|
|
|
|
|
|
239 |
if sampling_method == "fps":
|
240 |
sampling_method = "farthest"
|
241 |
|
@@ -255,7 +367,13 @@ def run_fn(
|
|
255 |
"min_dist": min_dist,
|
256 |
"sampling_method": sampling_method,
|
257 |
"old_school_ncut": old_school_ncut,
|
|
|
|
|
|
|
|
|
|
|
258 |
}
|
|
|
259 |
num_images = len(images)
|
260 |
if num_images > 100:
|
261 |
return super_duper_long_run(images, **kwargs)
|
@@ -278,13 +396,21 @@ def run_fn(
|
|
278 |
|
279 |
def make_input_images_section():
|
280 |
gr.Markdown('### Input Images')
|
281 |
-
input_gallery = gr.Gallery(value=
|
282 |
submit_button = gr.Button("🔴RUN", elem_id="submit_button")
|
283 |
clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button')
|
284 |
return input_gallery, submit_button, clear_images_button
|
285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
def make_example_images_section():
|
287 |
-
gr.Markdown('### Load
|
288 |
load_images_button = gr.Button("Load Example", elem_id="load-images-button")
|
289 |
example_gallery = gr.Gallery(value=example_items, label="Example Set A", show_label=False, columns=[3], rows=[2], object_fit="scale-down", height="200px", show_share_button=False, elem_id="example-gallery")
|
290 |
hide_button = gr.Button("Hide Example", elem_id="hide-button")
|
@@ -294,24 +420,30 @@ def make_example_images_section():
|
|
294 |
)
|
295 |
return load_images_button, example_gallery, hide_button
|
296 |
|
|
|
|
|
|
|
|
|
|
|
297 |
def make_dataset_images_section():
|
298 |
-
with gr.Accordion("
|
299 |
dataset_names = [
|
300 |
'UCSC-VLAA/Recap-COCO-30K',
|
301 |
'nateraw/pascal-voc-2012',
|
302 |
'johnowhitaker/imagenette2-320',
|
303 |
'jainr3/diffusiondb-pixelart',
|
|
|
304 |
'JapanDegitalMaterial/Places_in_Japan',
|
305 |
'Borismile/Anime-dataset',
|
306 |
]
|
307 |
dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="UCSC-VLAA/Recap-COCO-30K", elem_id="dataset")
|
308 |
num_images_slider = gr.Slider(1, 200, step=1, label="Number of images", value=9, elem_id="num_images")
|
309 |
-
random_seed_slider = gr.Number(0, label="Random seed",
|
310 |
load_dataset_button = gr.Button("Load Dataset", elem_id="load-dataset-button")
|
311 |
def load_dataset_images(dataset_name, num_images=10, random_seed=42):
|
312 |
from datasets import load_dataset
|
313 |
try:
|
314 |
-
dataset = load_dataset(dataset_name)
|
315 |
key = list(dataset.keys())[0]
|
316 |
dataset = dataset[key]
|
317 |
except Exception as e:
|
@@ -339,9 +471,9 @@ def make_parameters_section():
|
|
339 |
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
|
340 |
affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
|
341 |
|
342 |
-
with gr.Accordion("
|
343 |
num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
|
344 |
-
sampling_method_dropdown = gr.Dropdown(["fps", "random"], label="NCUT: Sampling method", value="fps", elem_id="sampling_method")
|
345 |
knn_ncut_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation")
|
346 |
embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_shpere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
|
347 |
num_sample_tsne_slider = gr.Slider(100, 1000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
|
@@ -357,7 +489,7 @@ def make_parameters_section():
|
|
357 |
|
358 |
with gr.Blocks() as demo:
|
359 |
|
360 |
-
with gr.Tab('AlignedCut
|
361 |
|
362 |
with gr.Row():
|
363 |
with gr.Column(scale=5, min_width=200):
|
@@ -392,10 +524,15 @@ with gr.Blocks() as demo:
|
|
392 |
|
393 |
with gr.Tab('NCut (Legacy)'):
|
394 |
gr.Markdown('#### Ncut, not aligned, no Nyström approximation')
|
395 |
-
gr.Markdown('
|
396 |
-
gr.Markdown('2. No Nyström approximation')
|
397 |
|
398 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
with gr.Row():
|
400 |
with gr.Column(scale=5, min_width=200):
|
401 |
gr.Markdown('#### Pros')
|
@@ -451,6 +588,122 @@ with gr.Blocks() as demo:
|
|
451 |
],
|
452 |
outputs=[output_gallery, logging_text]
|
453 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
demo.launch(share=True)
|
455 |
|
456 |
# %%
|
|
|
8 |
except ImportError:
|
9 |
USE_SPACES = False # run on standard GPU
|
10 |
|
11 |
+
import os
|
12 |
import gradio as gr
|
13 |
|
14 |
import torch
|
|
|
35 |
n_neighbors=150,
|
36 |
min_dist=0.1,
|
37 |
sampling_method="fps",
|
38 |
+
metric="cosine",
|
39 |
):
|
40 |
logging_str = ""
|
41 |
|
|
|
54 |
affinity_focal_gamma=affinity_focal_gamma,
|
55 |
knn=knn_ncut,
|
56 |
sample_method=sampling_method,
|
57 |
+
distance=metric,
|
58 |
).fit_transform(features.reshape(-1, features.shape[-1]))
|
59 |
# print(f"NCUT time: {time.time() - start:.2f}s")
|
60 |
logging_str += f"NCUT time: {time.time() - start:.2f}s\n"
|
|
|
73 |
logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n"
|
74 |
|
75 |
rgb = rgb.reshape(features.shape[:3] + (3,))
|
76 |
+
return rgb, logging_str, eigvecs
|
77 |
|
78 |
|
79 |
def dont_use_too_much_green(image_rgb):
|
|
|
93 |
]
|
94 |
|
95 |
|
96 |
+
|
97 |
+
def pil_images_to_video(images, output_path, fps=5):
|
98 |
+
# from pil images to numpy
|
99 |
+
images = [np.array(image) for image in images]
|
100 |
+
|
101 |
+
print("Saving video to", output_path)
|
102 |
+
import cv2
|
103 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
104 |
+
height, width, _ = images[0].shape
|
105 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
106 |
+
for image in images:
|
107 |
+
out.write(cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
|
108 |
+
out.release()
|
109 |
+
return output_path
|
110 |
+
|
111 |
+
# save up to 100 videos in disk
|
112 |
+
class VideoCache:
|
113 |
+
def __init__(self, max_videos=100):
|
114 |
+
self.max_videos = max_videos
|
115 |
+
self.videos = {}
|
116 |
+
|
117 |
+
def add_video(self, video_path):
|
118 |
+
if len(self.videos) >= self.max_videos:
|
119 |
+
pop_path = self.videos.popitem()[0]
|
120 |
+
try:
|
121 |
+
os.remove(pop_path)
|
122 |
+
except:
|
123 |
+
pass
|
124 |
+
self.videos[video_path] = video_path
|
125 |
+
|
126 |
+
def get_video(self, video_path):
|
127 |
+
return self.videos.get(video_path, None)
|
128 |
+
|
129 |
+
video_cache = VideoCache()
|
130 |
+
|
131 |
+
def get_random_path(length=10):
|
132 |
+
import random
|
133 |
+
import string
|
134 |
+
name = ''.join(random.choices(string.ascii_lowercase + string.digits, k=length))
|
135 |
+
path = f'/tmp/{name}.mp4'
|
136 |
+
return path
|
137 |
+
|
138 |
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg']
|
139 |
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg']
|
140 |
default_outputs_independent = ['./images/ncut_0_independent.jpg', './images/ncut_1_independent.jpg', './images/ncut_2_independent.jpg', './images/ncut_3_independent.jpg', './images/ncut_5_independent.jpg']
|
|
|
144 |
|
145 |
example_items = downscaled_images[:3] + downscaled_outputs[:3]
|
146 |
|
147 |
+
|
148 |
+
|
149 |
def ncut_run(
|
150 |
images,
|
151 |
model_name="SAM(sam_vit_b)",
|
|
|
163 |
min_dist=0.1,
|
164 |
sampling_method="fps",
|
165 |
old_school_ncut=False,
|
166 |
+
recursion=False,
|
167 |
+
recursion_l2_n_eigs=50,
|
168 |
+
recursion_l3_n_eigs=20,
|
169 |
+
recursion_metric="euclidean",
|
170 |
+
video_output=False,
|
171 |
):
|
172 |
logging_str = ""
|
173 |
if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
|
|
|
189 |
# print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
|
190 |
logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
|
191 |
|
192 |
+
if recursion:
|
193 |
+
rgbs = []
|
194 |
+
inp = features
|
195 |
+
for i, n_eigs in enumerate([num_eig, recursion_l2_n_eigs, recursion_l3_n_eigs]):
|
196 |
+
logging_str += f"Recursion #{i+1}\n"
|
197 |
+
rgb, _logging_str, eigvecs = compute_ncut(
|
198 |
+
inp,
|
199 |
+
num_eig=n_eigs,
|
200 |
+
num_sample_ncut=num_sample_ncut,
|
201 |
+
affinity_focal_gamma=affinity_focal_gamma,
|
202 |
+
knn_ncut=knn_ncut,
|
203 |
+
knn_tsne=knn_tsne,
|
204 |
+
num_sample_tsne=num_sample_tsne,
|
205 |
+
embedding_method=embedding_method,
|
206 |
+
perplexity=perplexity,
|
207 |
+
n_neighbors=n_neighbors,
|
208 |
+
min_dist=min_dist,
|
209 |
+
sampling_method=sampling_method,
|
210 |
+
metric="cosine" if i == 0 else recursion_metric,
|
211 |
+
)
|
212 |
+
logging_str += _logging_str
|
213 |
+
rgb = dont_use_too_much_green(rgb)
|
214 |
+
rgbs.append(to_pil_images(rgb))
|
215 |
+
inp = eigvecs.reshape(*features.shape[:3], -1)
|
216 |
+
return rgbs[0], rgbs[1], rgbs[2], logging_str
|
217 |
+
|
218 |
if old_school_ncut: # individual images
|
219 |
logging_str += "Running NCut for each image independently\n"
|
220 |
rgb = []
|
221 |
for i_image in range(features.shape[0]):
|
222 |
feature = features[i_image]
|
223 |
+
_rgb, _logging_str, _ = compute_ncut(
|
224 |
feature[None],
|
225 |
num_eig=num_eig,
|
226 |
num_sample_ncut=num_sample_ncut,
|
|
|
236 |
)
|
237 |
logging_str += _logging_str
|
238 |
rgb.append(_rgb[0])
|
239 |
+
|
240 |
+
if not old_school_ncut: # joint across all images
|
241 |
+
rgb, _logging_str, _ = compute_ncut(
|
242 |
+
features,
|
243 |
+
num_eig=num_eig,
|
244 |
+
num_sample_ncut=num_sample_ncut,
|
245 |
+
affinity_focal_gamma=affinity_focal_gamma,
|
246 |
+
knn_ncut=knn_ncut,
|
247 |
+
knn_tsne=knn_tsne,
|
248 |
+
num_sample_tsne=num_sample_tsne,
|
249 |
+
embedding_method=embedding_method,
|
250 |
+
perplexity=perplexity,
|
251 |
+
n_neighbors=n_neighbors,
|
252 |
+
min_dist=min_dist,
|
253 |
+
sampling_method=sampling_method,
|
254 |
+
)
|
255 |
+
logging_str += _logging_str
|
256 |
+
|
257 |
+
rgb = dont_use_too_much_green(rgb)
|
258 |
+
|
259 |
+
|
260 |
+
if video_output:
|
261 |
+
video_path = get_random_path()
|
262 |
+
video_cache.add_video(video_path)
|
263 |
+
pil_images_to_video(to_pil_images(rgb), video_path)
|
264 |
+
return video_path, logging_str
|
265 |
+
else:
|
266 |
+
return to_pil_images(rgb), logging_str
|
267 |
|
268 |
def _ncut_run(*args, **kwargs):
|
269 |
try:
|
|
|
302 |
def super_duper_long_run(*args, **kwargs):
|
303 |
return _ncut_run(*args, **kwargs)
|
304 |
|
305 |
+
def extract_video_frames(video_path, max_frames=100):
|
306 |
+
from decord import VideoReader
|
307 |
+
vr = VideoReader(video_path)
|
308 |
+
num_frames = len(vr)
|
309 |
+
if num_frames > max_frames:
|
310 |
+
gr.Warning(f"Video has {num_frames} frames. Only using {max_frames} frames. Evenly spaced.")
|
311 |
+
frame_idx = np.linspace(0, num_frames - 1, max_frames, dtype=int).tolist()
|
312 |
+
else:
|
313 |
+
frame_idx = list(range(num_frames))
|
314 |
+
frames = vr.get_batch(frame_idx).asnumpy()
|
315 |
+
# return as list of PIL images
|
316 |
+
return [(Image.fromarray(frames[i]), "") for i in range(frames.shape[0])]
|
317 |
+
|
318 |
def run_fn(
|
319 |
images,
|
320 |
model_name="SAM(sam_vit_b)",
|
|
|
332 |
min_dist=0.1,
|
333 |
sampling_method="fps",
|
334 |
old_school_ncut=False,
|
335 |
+
max_frames=100,
|
336 |
+
recursion=False,
|
337 |
+
recursion_l2_n_eigs=50,
|
338 |
+
recursion_l3_n_eigs=20,
|
339 |
+
recursion_metric="euclidean",
|
340 |
):
|
341 |
+
print("Running...")
|
342 |
if images is None:
|
343 |
gr.Warning("No images selected.")
|
344 |
return [], "No images selected."
|
345 |
|
346 |
+
video_output = False
|
347 |
+
if isinstance(images, str):
|
348 |
+
images = extract_video_frames(images, max_frames=max_frames)
|
349 |
+
video_output = True
|
350 |
+
|
351 |
if sampling_method == "fps":
|
352 |
sampling_method = "farthest"
|
353 |
|
|
|
367 |
"min_dist": min_dist,
|
368 |
"sampling_method": sampling_method,
|
369 |
"old_school_ncut": old_school_ncut,
|
370 |
+
"recursion": recursion,
|
371 |
+
"recursion_l2_n_eigs": recursion_l2_n_eigs,
|
372 |
+
"recursion_l3_n_eigs": recursion_l3_n_eigs,
|
373 |
+
"recursion_metric": recursion_metric,
|
374 |
+
"video_output": video_output,
|
375 |
}
|
376 |
+
print(kwargs)
|
377 |
num_images = len(images)
|
378 |
if num_images > 100:
|
379 |
return super_duper_long_run(images, **kwargs)
|
|
|
396 |
|
397 |
def make_input_images_section():
|
398 |
gr.Markdown('### Input Images')
|
399 |
+
input_gallery = gr.Gallery(value=None, label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil", show_share_button=False)
|
400 |
submit_button = gr.Button("🔴RUN", elem_id="submit_button")
|
401 |
clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button')
|
402 |
return input_gallery, submit_button, clear_images_button
|
403 |
|
404 |
+
def make_input_video_section():
|
405 |
+
gr.Markdown('### Input Video')
|
406 |
+
input_gallery = gr.Video(value=None, label="Select video", elem_id="video-input", height="auto", show_share_button=False)
|
407 |
+
max_frames_number = gr.Number(100, label="Max frames", elem_id="max_frames")
|
408 |
+
submit_button = gr.Button("🔴RUN", elem_id="submit_button")
|
409 |
+
clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button')
|
410 |
+
return input_gallery, submit_button, clear_images_button, max_frames_number
|
411 |
+
|
412 |
def make_example_images_section():
|
413 |
+
gr.Markdown('### Load Images 👇')
|
414 |
load_images_button = gr.Button("Load Example", elem_id="load-images-button")
|
415 |
example_gallery = gr.Gallery(value=example_items, label="Example Set A", show_label=False, columns=[3], rows=[2], object_fit="scale-down", height="200px", show_share_button=False, elem_id="example-gallery")
|
416 |
hide_button = gr.Button("Hide Example", elem_id="hide-button")
|
|
|
420 |
)
|
421 |
return load_images_button, example_gallery, hide_button
|
422 |
|
423 |
+
def make_example_video_section():
|
424 |
+
gr.Markdown('### Load Video 👇')
|
425 |
+
load_video_button = gr.Button("Load Example", elem_id="load-video-button")
|
426 |
+
return load_video_button
|
427 |
+
|
428 |
def make_dataset_images_section():
|
429 |
+
with gr.Accordion("➡️ Load from dataset", open=True):
|
430 |
dataset_names = [
|
431 |
'UCSC-VLAA/Recap-COCO-30K',
|
432 |
'nateraw/pascal-voc-2012',
|
433 |
'johnowhitaker/imagenette2-320',
|
434 |
'jainr3/diffusiondb-pixelart',
|
435 |
+
'nielsr/CelebA-faces',
|
436 |
'JapanDegitalMaterial/Places_in_Japan',
|
437 |
'Borismile/Anime-dataset',
|
438 |
]
|
439 |
dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="UCSC-VLAA/Recap-COCO-30K", elem_id="dataset")
|
440 |
num_images_slider = gr.Slider(1, 200, step=1, label="Number of images", value=9, elem_id="num_images")
|
441 |
+
random_seed_slider = gr.Number(0, label="Random seed", elem_id="random_seed")
|
442 |
load_dataset_button = gr.Button("Load Dataset", elem_id="load-dataset-button")
|
443 |
def load_dataset_images(dataset_name, num_images=10, random_seed=42):
|
444 |
from datasets import load_dataset
|
445 |
try:
|
446 |
+
dataset = load_dataset(dataset_name, trust_remote_code=True)
|
447 |
key = list(dataset.keys())[0]
|
448 |
dataset = dataset[key]
|
449 |
except Exception as e:
|
|
|
471 |
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
|
472 |
affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
|
473 |
|
474 |
+
with gr.Accordion("➡️ Click to expand: more parameters", open=False):
|
475 |
num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
|
476 |
+
sampling_method_dropdown = gr.Dropdown(["fps", "random"], label="NCUT: Sampling method", value="fps", elem_id="sampling_method", info="Nyström approximation")
|
477 |
knn_ncut_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation")
|
478 |
embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_shpere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
|
479 |
num_sample_tsne_slider = gr.Slider(100, 1000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
|
|
|
489 |
|
490 |
with gr.Blocks() as demo:
|
491 |
|
492 |
+
with gr.Tab('AlignedCut'):
|
493 |
|
494 |
with gr.Row():
|
495 |
with gr.Column(scale=5, min_width=200):
|
|
|
524 |
|
525 |
with gr.Tab('NCut (Legacy)'):
|
526 |
gr.Markdown('#### Ncut, not aligned, no Nyström approximation')
|
527 |
+
gr.Markdown('Each image is solved independently, _color is not aligned across images_')
|
|
|
528 |
|
529 |
+
with gr.Row():
|
530 |
+
with gr.Column(scale=3, min_width=200):
|
531 |
+
gr.Markdown('')
|
532 |
+
with gr.Column(scale=5, min_width=200):
|
533 |
+
gr.Markdown('### NCut vs. AlignedCut')
|
534 |
+
with gr.Column(scale=2, min_width=200):
|
535 |
+
gr.Markdown('')
|
536 |
with gr.Row():
|
537 |
with gr.Column(scale=5, min_width=200):
|
538 |
gr.Markdown('#### Pros')
|
|
|
588 |
],
|
589 |
outputs=[output_gallery, logging_text]
|
590 |
)
|
591 |
+
|
592 |
+
with gr.Tab('Recursive Cut'):
|
593 |
+
gr.Markdown('NCUT can be applied recursively, the eigenvectors from previous iteration is the input for the next iteration NCUT. ')
|
594 |
+
gr.Markdown('__Recursive NCUT__ amplifies small object parts, please see [Documentation](https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/#recursive-ncut)')
|
595 |
+
|
596 |
+
gr.Markdown('---')
|
597 |
+
|
598 |
+
with gr.Row():
|
599 |
+
with gr.Column(scale=5, min_width=200):
|
600 |
+
input_gallery, submit_button, clear_images_button = make_input_images_section()
|
601 |
+
dataset_dropdown, num_images_slider, random_seed_slider, load_dataset_button = make_dataset_images_section()
|
602 |
+
num_images_slider.value = 100
|
603 |
+
dataset_dropdown.value = 'nielsr/CelebA-faces'
|
604 |
+
|
605 |
+
with gr.Column(scale=5, min_width=200):
|
606 |
+
with gr.Accordion("➡️ Recursion config", open=True):
|
607 |
+
l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig")
|
608 |
+
l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig")
|
609 |
+
l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=25, elem_id="l3_num_eig")
|
610 |
+
metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric")
|
611 |
+
|
612 |
+
[
|
613 |
+
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
|
614 |
+
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
615 |
+
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
616 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider,
|
617 |
+
sampling_method_dropdown
|
618 |
+
] = make_parameters_section()
|
619 |
+
num_eig_slider.visible = False
|
620 |
+
model_dropdown.value = 'DiNO(dinov2_vitb14_reg)'
|
621 |
+
layer_slider.value = 6
|
622 |
+
node_type_dropdown.value = 'attn: attention output'
|
623 |
+
affinity_focal_gamma_slider.value = 0.25
|
624 |
+
# logging text box
|
625 |
+
with gr.Row():
|
626 |
+
with gr.Column(scale=5, min_width=200):
|
627 |
+
gr.Markdown('### Output (Recursion #1)')
|
628 |
+
l1_gallery = gr.Gallery(value=[], label="Recursion #1", show_label=False, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto")
|
629 |
+
with gr.Column(scale=5, min_width=200):
|
630 |
+
gr.Markdown('### Output (Recursion #2)')
|
631 |
+
l2_gallery = gr.Gallery(value=[], label="Recursion #2", show_label=False, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto")
|
632 |
+
with gr.Column(scale=5, min_width=200):
|
633 |
+
gr.Markdown('### Output (Recursion #3)')
|
634 |
+
l3_gallery = gr.Gallery(value=[], label="Recursion #3", show_label=False, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto")
|
635 |
+
with gr.Row():
|
636 |
+
with gr.Column(scale=5, min_width=200):
|
637 |
+
gr.Markdown(' ')
|
638 |
+
with gr.Column(scale=5, min_width=200):
|
639 |
+
gr.Markdown(' ')
|
640 |
+
with gr.Column(scale=5, min_width=200):
|
641 |
+
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
|
642 |
+
true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder")
|
643 |
+
true_placeholder.visible = False
|
644 |
+
false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder")
|
645 |
+
false_placeholder.visible = False
|
646 |
+
number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder")
|
647 |
+
number_placeholder.visible = False
|
648 |
+
clear_images_button.click(lambda x: ([], [], [], []), outputs=[input_gallery, l1_gallery, l2_gallery, l3_gallery])
|
649 |
+
submit_button.click(
|
650 |
+
run_fn,
|
651 |
+
inputs=[
|
652 |
+
input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown,
|
653 |
+
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
654 |
+
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
655 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown,
|
656 |
+
false_placeholder, number_placeholder, true_placeholder,
|
657 |
+
l2_num_eig_slider, l3_num_eig_slider, metric_dropdown,
|
658 |
+
],
|
659 |
+
outputs=[l1_gallery, l2_gallery, l3_gallery, logging_text]
|
660 |
+
)
|
661 |
+
|
662 |
+
|
663 |
+
with gr.Tab('AlignedCut (Video)'):
|
664 |
+
with gr.Row():
|
665 |
+
with gr.Column(scale=5, min_width=200):
|
666 |
+
input_gallery, submit_button, clear_images_button, max_frame_number = make_input_video_section()
|
667 |
+
load_video_button = make_example_video_section()
|
668 |
+
with gr.Column(scale=5, min_width=200):
|
669 |
+
output_gallery = gr.Video(value=None, label="NCUT Embedding", elem_id="ncut", height="auto", show_share_button=False)
|
670 |
+
gr.Markdown('_image backbone model is used to extract features from each frame, NCUT is computed on all frames_')
|
671 |
+
[
|
672 |
+
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
|
673 |
+
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
674 |
+
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
675 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider,
|
676 |
+
sampling_method_dropdown
|
677 |
+
] = make_parameters_section()
|
678 |
+
num_sample_tsne_slider.value = 1000
|
679 |
+
perplexity_slider.value = 500
|
680 |
+
n_neighbors_slider.value = 500
|
681 |
+
knn_tsne_slider.value = 20
|
682 |
+
# logging text box
|
683 |
+
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
|
684 |
+
load_images_button.click(lambda x: (default_images, default_outputs), outputs=[input_gallery, output_gallery])
|
685 |
+
load_video_button.click(lambda x: './images/ego4d_dog.mp4', outputs=[input_gallery])
|
686 |
+
clear_images_button.click(lambda x: (None, []), outputs=[input_gallery, output_gallery])
|
687 |
+
place_holder_false = gr.Checkbox(label="Place holder", value=False, elem_id="place_holder_false")
|
688 |
+
place_holder_false.visible = False
|
689 |
+
submit_button.click(
|
690 |
+
run_fn,
|
691 |
+
inputs=[
|
692 |
+
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
|
693 |
+
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
694 |
+
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
695 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown,
|
696 |
+
place_holder_false, max_frame_number
|
697 |
+
],
|
698 |
+
outputs=[output_gallery, logging_text]
|
699 |
+
)
|
700 |
+
|
701 |
+
with gr.Tab('AlignedCut (Text)'):
|
702 |
+
gr.Markdown('=== under construction ===')
|
703 |
+
gr.Markdown('Please see the [Documentation](https://ncut-pytorch.readthedocs.io/en/latest/gallery_llama3/) for example of NCUT on text input.')
|
704 |
+
gr.Markdown('---')
|
705 |
+
gr.Markdown('![ncut](https://ncut-pytorch.readthedocs.io/en/latest/images/gallery/llama3/llama3_layer_31.jpg)')
|
706 |
+
|
707 |
demo.launch(share=True)
|
708 |
|
709 |
# %%
|
requirements.txt
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
torch
|
2 |
torchvision
|
3 |
ncut-pytorch
|
|
|
4 |
transformers
|
5 |
datasets
|
6 |
segment-anything @ git+https://github.com/facebookresearch/segment-anything.git
|
|
|
1 |
torch
|
2 |
torchvision
|
3 |
ncut-pytorch
|
4 |
+
opencv-python
|
5 |
transformers
|
6 |
datasets
|
7 |
segment-anything @ git+https://github.com/facebookresearch/segment-anything.git
|