Spaces:
Running
on
Zero
Running
on
Zero
update ncut(legacy)
Browse files
app.py
CHANGED
@@ -2,8 +2,11 @@
|
|
2 |
# %%
|
3 |
USE_SPACES = True
|
4 |
|
5 |
-
if USE_SPACES:
|
6 |
-
|
|
|
|
|
|
|
7 |
|
8 |
import gradio as gr
|
9 |
|
@@ -14,10 +17,7 @@ import time
|
|
14 |
|
15 |
import gradio as gr
|
16 |
|
17 |
-
|
18 |
-
from backbone import extract_features
|
19 |
-
else:
|
20 |
-
from draft_gradio_backbone import extract_features
|
21 |
from ncut_pytorch import NCUT, eigenvector_to_rgb
|
22 |
|
23 |
|
@@ -88,9 +88,11 @@ def to_pil_images(images):
|
|
88 |
Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((256, 256), Image.Resampling.NEAREST)
|
89 |
for image in images
|
90 |
]
|
|
|
91 |
|
92 |
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg']
|
93 |
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg']
|
|
|
94 |
|
95 |
downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg']
|
96 |
downscaled_outputs = ['./images/ncut_0_small.jpg', './images/ncut_1_small.jpg', './images/ncut_2_small.jpg', './images/ncut_3_small.jpg', './images/ncut_5_small.jpg']
|
@@ -113,6 +115,7 @@ def ncut_run(
|
|
113 |
n_neighbors=500,
|
114 |
min_dist=0.1,
|
115 |
sampling_method="fps",
|
|
|
116 |
):
|
117 |
logging_str = ""
|
118 |
if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
|
@@ -134,22 +137,44 @@ def ncut_run(
|
|
134 |
# print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
|
135 |
logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
return to_pil_images(rgb), logging_str
|
154 |
|
155 |
def _ncut_run(*args, **kwargs):
|
@@ -205,6 +230,7 @@ def run_fn(
|
|
205 |
n_neighbors=500,
|
206 |
min_dist=0.1,
|
207 |
sampling_method="fps",
|
|
|
208 |
):
|
209 |
if images is None:
|
210 |
gr.Warning("No images selected.")
|
@@ -228,10 +254,13 @@ def run_fn(
|
|
228 |
"n_neighbors": n_neighbors,
|
229 |
"min_dist": min_dist,
|
230 |
"sampling_method": sampling_method,
|
|
|
231 |
}
|
232 |
num_images = len(images)
|
233 |
if num_images > 100:
|
234 |
return super_duper_long_run(images, **kwargs)
|
|
|
|
|
235 |
if num_images > 10:
|
236 |
return long_run(images, **kwargs)
|
237 |
if embedding_method == "UMAP":
|
@@ -244,73 +273,47 @@ def run_fn(
|
|
244 |
return quick_run(images, **kwargs)
|
245 |
|
246 |
return quick_run(images, **kwargs)
|
247 |
-
|
248 |
-
with gr.Blocks() as demo:
|
249 |
|
250 |
-
with gr.Row():
|
251 |
-
with gr.Column(scale=5, min_width=200):
|
252 |
-
gr.Markdown('### Input Images')
|
253 |
-
input_gallery = gr.Gallery(value=[], label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil", show_share_button=False)
|
254 |
-
submit_button = gr.Button("🔴RUN", elem_id="submit_button")
|
255 |
-
clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button')
|
256 |
-
|
257 |
-
gr.Markdown('### Load from Cloud Dataset 👇')
|
258 |
-
load_images_button = gr.Button("Load Example", elem_id="load-images-button")
|
259 |
-
example_gallery = gr.Gallery(value=example_items, label="Example Set A", show_label=False, columns=[3], rows=[2], object_fit="scale-down", height="200px", show_share_button=False, elem_id="example-gallery")
|
260 |
-
hide_button = gr.Button("Hide Example", elem_id="hide-button")
|
261 |
-
|
262 |
-
hide_button.click(
|
263 |
-
fn=lambda: gr.update(visible=False),
|
264 |
-
outputs=example_gallery
|
265 |
-
)
|
266 |
-
|
267 |
-
with gr.Accordion("➜ Load from dataset", open=True):
|
268 |
-
dataset_names = [
|
269 |
-
'UCSC-VLAA/Recap-COCO-30K',
|
270 |
-
'nateraw/pascal-voc-2012',
|
271 |
-
'johnowhitaker/imagenette2-320',
|
272 |
-
'jainr3/diffusiondb-pixelart',
|
273 |
-
'JapanDegitalMaterial/Places_in_Japan',
|
274 |
-
'Borismile/Anime-dataset',
|
275 |
-
]
|
276 |
-
dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="UCSC-VLAA/Recap-COCO-30K", elem_id="dataset")
|
277 |
-
num_images_slider = gr.Slider(1, 200, step=1, label="Number of images", value=9, elem_id="num_images")
|
278 |
-
random_seed_slider = gr.Number(0, label="Random seed", value=42, elem_id="random_seed")
|
279 |
-
load_dataset_button = gr.Button("Load Dataset", elem_id="load-dataset-button")
|
280 |
-
|
281 |
-
with gr.Column(scale=5, min_width=200):
|
282 |
-
gr.Markdown('### Output Images')
|
283 |
-
output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto")
|
284 |
-
model_dropdown = gr.Dropdown(["SAM(sam_vit_b)", "MobileSAM", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)", "MAE(vit_base)"], label="Backbone", value="SAM(sam_vit_b)", elem_id="model_name")
|
285 |
-
layer_slider = gr.Slider(0, 11, step=1, label="Backbone: Layer index", value=11, elem_id="layer")
|
286 |
-
node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
|
287 |
-
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
|
288 |
-
affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
|
289 |
-
|
290 |
-
with gr.Accordion("➜ Click to expand: more parameters", open=False):
|
291 |
-
num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
|
292 |
-
sampling_method_dropdown = gr.Dropdown(["fps", "random"], label="NCUT: Sampling method", value="fps", elem_id="sampling_method")
|
293 |
-
knn_ncut_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation")
|
294 |
-
embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_shpere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
|
295 |
-
num_sample_tsne_slider = gr.Slider(100, 1000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
|
296 |
-
knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation")
|
297 |
-
perplexity_slider = gr.Slider(10, 500, step=10, label="t-SNE: Perplexity", value=150, elem_id="perplexity")
|
298 |
-
n_neighbors_slider = gr.Slider(10, 500, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors")
|
299 |
-
min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist")
|
300 |
-
|
301 |
-
# logging text box
|
302 |
-
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
|
303 |
-
|
304 |
-
def load_default_images():
|
305 |
-
return default_images, default_outputs
|
306 |
|
307 |
-
def empty_input_and_output():
|
308 |
-
return [], []
|
309 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
def load_dataset_images(dataset_name, num_images=10, random_seed=42):
|
311 |
from datasets import load_dataset
|
312 |
try:
|
313 |
-
dataset = load_dataset(dataset_name)
|
|
|
|
|
314 |
except Exception as e:
|
315 |
gr.Error(f"Error loading dataset {dataset_name}: {e}")
|
316 |
return None
|
@@ -319,27 +322,135 @@ with gr.Blocks() as demo:
|
|
319 |
image_idx = np.random.RandomState(random_seed).choice(len(dataset), num_images, replace=False)
|
320 |
image_idx = image_idx.tolist()
|
321 |
images = [dataset[i]['image'] for i in image_idx]
|
322 |
-
return images
|
323 |
-
|
324 |
-
|
325 |
-
load_images_button.click(load_default_images, outputs=[input_gallery, output_gallery])
|
326 |
-
clear_images_button.click(empty_input_and_output, outputs=[input_gallery, output_gallery])
|
327 |
load_dataset_button.click(load_dataset_images, inputs=[dataset_dropdown, num_images_slider, random_seed_slider], outputs=[input_gallery])
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
333 |
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
334 |
-
perplexity_slider, n_neighbors_slider, min_dist_slider,
|
335 |
-
|
336 |
-
outputs=[output_gallery, logging_text]
|
337 |
-
)
|
338 |
|
|
|
339 |
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
|
345 |
# %%
|
|
|
2 |
# %%
|
3 |
USE_SPACES = True
|
4 |
|
5 |
+
if USE_SPACES: # huggingface ZeroGPU
|
6 |
+
try:
|
7 |
+
import spaces
|
8 |
+
except ImportError:
|
9 |
+
USE_SPACES = False # run on standard GPU
|
10 |
|
11 |
import gradio as gr
|
12 |
|
|
|
17 |
|
18 |
import gradio as gr
|
19 |
|
20 |
+
from backbone import extract_features
|
|
|
|
|
|
|
21 |
from ncut_pytorch import NCUT, eigenvector_to_rgb
|
22 |
|
23 |
|
|
|
88 |
Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((256, 256), Image.Resampling.NEAREST)
|
89 |
for image in images
|
90 |
]
|
91 |
+
|
92 |
|
93 |
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg']
|
94 |
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg']
|
95 |
+
default_outputs_independent = ['./images/ncut_0_independent.jpg', './images/ncut_1_independent.jpg', './images/ncut_2_independent.jpg', './images/ncut_3_independent.jpg', './images/ncut_5_independent.jpg']
|
96 |
|
97 |
downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg']
|
98 |
downscaled_outputs = ['./images/ncut_0_small.jpg', './images/ncut_1_small.jpg', './images/ncut_2_small.jpg', './images/ncut_3_small.jpg', './images/ncut_5_small.jpg']
|
|
|
115 |
n_neighbors=500,
|
116 |
min_dist=0.1,
|
117 |
sampling_method="fps",
|
118 |
+
old_school_ncut=False,
|
119 |
):
|
120 |
logging_str = ""
|
121 |
if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
|
|
|
137 |
# print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
|
138 |
logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
|
139 |
|
140 |
+
if not old_school_ncut: # joint across all images
|
141 |
+
rgb, _logging_str = compute_ncut(
|
142 |
+
features,
|
143 |
+
num_eig=num_eig,
|
144 |
+
num_sample_ncut=num_sample_ncut,
|
145 |
+
affinity_focal_gamma=affinity_focal_gamma,
|
146 |
+
knn_ncut=knn_ncut,
|
147 |
+
knn_tsne=knn_tsne,
|
148 |
+
num_sample_tsne=num_sample_tsne,
|
149 |
+
embedding_method=embedding_method,
|
150 |
+
perplexity=perplexity,
|
151 |
+
n_neighbors=n_neighbors,
|
152 |
+
min_dist=min_dist,
|
153 |
+
sampling_method=sampling_method,
|
154 |
+
)
|
155 |
+
logging_str += _logging_str
|
156 |
+
rgb = dont_use_too_much_green(rgb)
|
157 |
+
if old_school_ncut: # individual images
|
158 |
+
logging_str += "Running NCut for each image independently\n"
|
159 |
+
rgb = []
|
160 |
+
for i_image in range(features.shape[0]):
|
161 |
+
feature = features[i_image]
|
162 |
+
_rgb, _logging_str = compute_ncut(
|
163 |
+
feature[None],
|
164 |
+
num_eig=num_eig,
|
165 |
+
num_sample_ncut=num_sample_ncut,
|
166 |
+
affinity_focal_gamma=affinity_focal_gamma,
|
167 |
+
knn_ncut=knn_ncut,
|
168 |
+
knn_tsne=knn_tsne,
|
169 |
+
num_sample_tsne=num_sample_tsne,
|
170 |
+
embedding_method=embedding_method,
|
171 |
+
perplexity=perplexity,
|
172 |
+
n_neighbors=n_neighbors,
|
173 |
+
min_dist=min_dist,
|
174 |
+
sampling_method=sampling_method,
|
175 |
+
)
|
176 |
+
logging_str += _logging_str
|
177 |
+
rgb.append(_rgb[0])
|
178 |
return to_pil_images(rgb), logging_str
|
179 |
|
180 |
def _ncut_run(*args, **kwargs):
|
|
|
230 |
n_neighbors=500,
|
231 |
min_dist=0.1,
|
232 |
sampling_method="fps",
|
233 |
+
old_school_ncut=False,
|
234 |
):
|
235 |
if images is None:
|
236 |
gr.Warning("No images selected.")
|
|
|
254 |
"n_neighbors": n_neighbors,
|
255 |
"min_dist": min_dist,
|
256 |
"sampling_method": sampling_method,
|
257 |
+
"old_school_ncut": old_school_ncut,
|
258 |
}
|
259 |
num_images = len(images)
|
260 |
if num_images > 100:
|
261 |
return super_duper_long_run(images, **kwargs)
|
262 |
+
if num_images > 50:
|
263 |
+
return longer_run(images, **kwargs)
|
264 |
if num_images > 10:
|
265 |
return long_run(images, **kwargs)
|
266 |
if embedding_method == "UMAP":
|
|
|
273 |
return quick_run(images, **kwargs)
|
274 |
|
275 |
return quick_run(images, **kwargs)
|
|
|
|
|
276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
|
|
|
|
278 |
|
279 |
+
def make_input_images_section():
|
280 |
+
gr.Markdown('### Input Images')
|
281 |
+
input_gallery = gr.Gallery(value=[], label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil", show_share_button=False)
|
282 |
+
submit_button = gr.Button("🔴RUN", elem_id="submit_button")
|
283 |
+
clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button')
|
284 |
+
return input_gallery, submit_button, clear_images_button
|
285 |
+
|
286 |
+
def make_example_images_section():
|
287 |
+
gr.Markdown('### Load from Cloud Dataset 👇')
|
288 |
+
load_images_button = gr.Button("Load Example", elem_id="load-images-button")
|
289 |
+
example_gallery = gr.Gallery(value=example_items, label="Example Set A", show_label=False, columns=[3], rows=[2], object_fit="scale-down", height="200px", show_share_button=False, elem_id="example-gallery")
|
290 |
+
hide_button = gr.Button("Hide Example", elem_id="hide-button")
|
291 |
+
hide_button.click(
|
292 |
+
fn=lambda: gr.update(visible=False),
|
293 |
+
outputs=example_gallery
|
294 |
+
)
|
295 |
+
return load_images_button, example_gallery, hide_button
|
296 |
+
|
297 |
+
def make_dataset_images_section():
|
298 |
+
with gr.Accordion("➜ Load from dataset", open=True):
|
299 |
+
dataset_names = [
|
300 |
+
'UCSC-VLAA/Recap-COCO-30K',
|
301 |
+
'nateraw/pascal-voc-2012',
|
302 |
+
'johnowhitaker/imagenette2-320',
|
303 |
+
'jainr3/diffusiondb-pixelart',
|
304 |
+
'JapanDegitalMaterial/Places_in_Japan',
|
305 |
+
'Borismile/Anime-dataset',
|
306 |
+
]
|
307 |
+
dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="UCSC-VLAA/Recap-COCO-30K", elem_id="dataset")
|
308 |
+
num_images_slider = gr.Slider(1, 200, step=1, label="Number of images", value=9, elem_id="num_images")
|
309 |
+
random_seed_slider = gr.Number(0, label="Random seed", value=42, elem_id="random_seed")
|
310 |
+
load_dataset_button = gr.Button("Load Dataset", elem_id="load-dataset-button")
|
311 |
def load_dataset_images(dataset_name, num_images=10, random_seed=42):
|
312 |
from datasets import load_dataset
|
313 |
try:
|
314 |
+
dataset = load_dataset(dataset_name)
|
315 |
+
key = list(dataset.keys())[0]
|
316 |
+
dataset = dataset[key]
|
317 |
except Exception as e:
|
318 |
gr.Error(f"Error loading dataset {dataset_name}: {e}")
|
319 |
return None
|
|
|
322 |
image_idx = np.random.RandomState(random_seed).choice(len(dataset), num_images, replace=False)
|
323 |
image_idx = image_idx.tolist()
|
324 |
images = [dataset[i]['image'] for i in image_idx]
|
325 |
+
return images
|
|
|
|
|
|
|
|
|
326 |
load_dataset_button.click(load_dataset_images, inputs=[dataset_dropdown, num_images_slider, random_seed_slider], outputs=[input_gallery])
|
327 |
+
return dataset_dropdown, num_images_slider, random_seed_slider, load_dataset_button
|
328 |
+
|
329 |
+
def make_output_images_section():
|
330 |
+
gr.Markdown('### Output Images')
|
331 |
+
output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto")
|
332 |
+
return output_gallery
|
333 |
+
|
334 |
+
def make_parameters_section():
|
335 |
+
gr.Markdown('### Parameters')
|
336 |
+
model_dropdown = gr.Dropdown(["SAM(sam_vit_b)", "MobileSAM", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)", "MAE(vit_base)"], label="Backbone", value="SAM(sam_vit_b)", elem_id="model_name")
|
337 |
+
layer_slider = gr.Slider(0, 11, step=1, label="Backbone: Layer index", value=11, elem_id="layer")
|
338 |
+
node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
|
339 |
+
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
|
340 |
+
affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
|
341 |
+
|
342 |
+
with gr.Accordion("➜ Click to expand: more parameters", open=False):
|
343 |
+
num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
|
344 |
+
sampling_method_dropdown = gr.Dropdown(["fps", "random"], label="NCUT: Sampling method", value="fps", elem_id="sampling_method")
|
345 |
+
knn_ncut_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation")
|
346 |
+
embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_shpere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
|
347 |
+
num_sample_tsne_slider = gr.Slider(100, 1000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
|
348 |
+
knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation")
|
349 |
+
perplexity_slider = gr.Slider(10, 500, step=10, label="t-SNE: Perplexity", value=150, elem_id="perplexity")
|
350 |
+
n_neighbors_slider = gr.Slider(10, 500, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors")
|
351 |
+
min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist")
|
352 |
+
return [model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
|
353 |
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
354 |
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
355 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider,
|
356 |
+
sampling_method_dropdown]
|
|
|
|
|
357 |
|
358 |
+
with gr.Blocks() as demo:
|
359 |
|
360 |
+
with gr.Tab('AlignedCut (Images)'):
|
361 |
+
|
362 |
+
with gr.Row():
|
363 |
+
with gr.Column(scale=5, min_width=200):
|
364 |
+
input_gallery, submit_button, clear_images_button = make_input_images_section()
|
365 |
+
load_images_button, example_gallery, hide_button = make_example_images_section()
|
366 |
+
dataset_dropdown, num_images_slider, random_seed_slider, load_dataset_button = make_dataset_images_section()
|
367 |
+
|
368 |
+
with gr.Column(scale=5, min_width=200):
|
369 |
+
output_gallery = make_output_images_section()
|
370 |
+
[
|
371 |
+
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
|
372 |
+
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
373 |
+
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
374 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider,
|
375 |
+
sampling_method_dropdown
|
376 |
+
] = make_parameters_section()
|
377 |
+
# logging text box
|
378 |
+
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
|
379 |
+
load_images_button.click(lambda x: (default_images, default_outputs), outputs=[input_gallery, output_gallery])
|
380 |
+
|
381 |
+
clear_images_button.click(lambda x: ([], []), outputs=[input_gallery, output_gallery])
|
382 |
+
submit_button.click(
|
383 |
+
run_fn,
|
384 |
+
inputs=[
|
385 |
+
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
|
386 |
+
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
387 |
+
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
388 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown
|
389 |
+
],
|
390 |
+
outputs=[output_gallery, logging_text]
|
391 |
+
)
|
392 |
+
|
393 |
+
with gr.Tab('NCut (Legacy)'):
|
394 |
+
gr.Markdown('#### Ncut, not aligned, no Nyström approximation')
|
395 |
+
gr.Markdown('1. Each image is solved independently, _color is not aligned across images_')
|
396 |
+
gr.Markdown('2. No Nyström approximation')
|
397 |
+
|
398 |
+
gr.Markdown('### NCut (Legacy) vs. AlignedCut:')
|
399 |
+
with gr.Row():
|
400 |
+
with gr.Column(scale=5, min_width=200):
|
401 |
+
gr.Markdown('#### Pros')
|
402 |
+
gr.Markdown('- Easy Solution. Use less eigenvectors.')
|
403 |
+
gr.Markdown('- Exact solution. No Nyström approximation.')
|
404 |
+
with gr.Column(scale=5, min_width=200):
|
405 |
+
gr.Markdown('#### Cons')
|
406 |
+
gr.Markdown('- Not aligned. Distance is not preserved across images. No pseudo-labeling or correspondence.')
|
407 |
+
gr.Markdown('- Poor complexity scaling. Unable to handle large number of pixels.')
|
408 |
+
gr.Markdown('---')
|
409 |
+
with gr.Row():
|
410 |
+
with gr.Column(scale=5, min_width=200):
|
411 |
+
gr.Markdown(' ')
|
412 |
+
with gr.Column(scale=5, min_width=200):
|
413 |
+
gr.Markdown('_color is not aligned across images_ 👇')
|
414 |
+
|
415 |
+
|
416 |
+
with gr.Row():
|
417 |
+
with gr.Column(scale=5, min_width=200):
|
418 |
+
input_gallery, submit_button, clear_images_button = make_input_images_section()
|
419 |
+
load_images_button, example_gallery, hide_button = make_example_images_section()
|
420 |
+
dataset_dropdown, num_images_slider, random_seed_slider, load_dataset_button = make_dataset_images_section()
|
421 |
+
example_gallery.visible = False
|
422 |
+
hide_button.visible = False
|
423 |
+
|
424 |
+
with gr.Column(scale=5, min_width=200):
|
425 |
+
output_gallery = make_output_images_section()
|
426 |
+
[
|
427 |
+
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
|
428 |
+
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
429 |
+
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
430 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider,
|
431 |
+
sampling_method_dropdown
|
432 |
+
] = make_parameters_section()
|
433 |
+
old_school_ncut_checkbox = gr.Checkbox(label="Old school NCut", value=True, elem_id="old_school_ncut")
|
434 |
+
invisible_list = [old_school_ncut_checkbox, num_sample_ncut_slider, knn_ncut_slider,
|
435 |
+
num_sample_tsne_slider, knn_tsne_slider, sampling_method_dropdown]
|
436 |
+
for item in invisible_list:
|
437 |
+
item.visible = False
|
438 |
+
# logging text box
|
439 |
+
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
|
440 |
+
load_images_button.click(lambda x: (default_images, default_outputs_independent), outputs=[input_gallery, output_gallery])
|
441 |
+
|
442 |
+
clear_images_button.click(lambda x: ([], []), outputs=[input_gallery, output_gallery])
|
443 |
+
submit_button.click(
|
444 |
+
run_fn,
|
445 |
+
inputs=[
|
446 |
+
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
|
447 |
+
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
448 |
+
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
449 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown,
|
450 |
+
old_school_ncut_checkbox
|
451 |
+
],
|
452 |
+
outputs=[output_gallery, logging_text]
|
453 |
+
)
|
454 |
+
demo.launch(share=True)
|
455 |
|
456 |
# %%
|