Spaces:
Running
on
Zero
Running
on
Zero
add about
Browse files
app.py
CHANGED
@@ -1284,10 +1284,18 @@ with demo:
|
|
1284 |
buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1])
|
1285 |
|
1286 |
|
1287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1288 |
with gr.Row():
|
1289 |
with gr.Column():
|
1290 |
-
gr.Markdown("#####
|
1291 |
with gr.Column():
|
1292 |
gr.Markdown("###### Running out of GPU? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn")
|
1293 |
|
|
|
1284 |
buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1])
|
1285 |
|
1286 |
|
1287 |
+
with gr.Tab('About'):
|
1288 |
+
gr.Markdown("##### This demo is for python package `ncut-pytorch`, please visit the [Documentation](https://ncut-pytorch.readthedocs.io/) ")
|
1289 |
+
gr.Markdown("---")
|
1290 |
+
gr.Markdown("**Normalized Cuts**, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.")
|
1291 |
+
gr.Markdown("---")
|
1292 |
+
gr.Markdown("##### We have implemented NCut, with some advanced features:")
|
1293 |
+
gr.Markdown("- **Nyström** Normalized Cut, is a new approximation algorithm developed for large-scale graph cuts, a large-graph of million nodes can be processed in under 10s (cpu) or 2s (gpu).")
|
1294 |
+
gr.Markdown("- **spectral-tSNE** visualization, a new method to visualize the high-dimensional eigenvector space with 3D RGB cube. Color is aligned across images, color infers distance in representation.")
|
1295 |
+
|
1296 |
with gr.Row():
|
1297 |
with gr.Column():
|
1298 |
+
gr.Markdown("##### This demo is for `ncut-pytorch`, [Documentation](https://ncut-pytorch.readthedocs.io/) ")
|
1299 |
with gr.Column():
|
1300 |
gr.Markdown("###### Running out of GPU? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn")
|
1301 |
|