huzey commited on
Commit
8d4b10a
·
1 Parent(s): f0e9f2d
Files changed (1) hide show
  1. app.py +10 -2
app.py CHANGED
@@ -1284,10 +1284,18 @@ with demo:
1284
  buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1])
1285
 
1286
 
1287
-
 
 
 
 
 
 
 
 
1288
  with gr.Row():
1289
  with gr.Column():
1290
- gr.Markdown("##### POWERED BY `ncut-pytorch`, [Documentation](https://ncut-pytorch.readthedocs.io/) ")
1291
  with gr.Column():
1292
  gr.Markdown("###### Running out of GPU? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn")
1293
 
 
1284
  buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1])
1285
 
1286
 
1287
+ with gr.Tab('About'):
1288
+ gr.Markdown("##### This demo is for python package `ncut-pytorch`, please visit the [Documentation](https://ncut-pytorch.readthedocs.io/) ")
1289
+ gr.Markdown("---")
1290
+ gr.Markdown("**Normalized Cuts**, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.")
1291
+ gr.Markdown("---")
1292
+ gr.Markdown("##### We have implemented NCut, with some advanced features:")
1293
+ gr.Markdown("- **Nyström** Normalized Cut, is a new approximation algorithm developed for large-scale graph cuts, a large-graph of million nodes can be processed in under 10s (cpu) or 2s (gpu).")
1294
+ gr.Markdown("- **spectral-tSNE** visualization, a new method to visualize the high-dimensional eigenvector space with 3D RGB cube. Color is aligned across images, color infers distance in representation.")
1295
+
1296
  with gr.Row():
1297
  with gr.Column():
1298
+ gr.Markdown("##### This demo is for `ncut-pytorch`, [Documentation](https://ncut-pytorch.readthedocs.io/) ")
1299
  with gr.Column():
1300
  gr.Markdown("###### Running out of GPU? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn")
1301