Spaces:
Running
on
Zero
Running
on
Zero
update parameters
Browse files
app.py
CHANGED
@@ -592,9 +592,9 @@ def to_pil_images(images):
|
|
592 |
def main_fn(
|
593 |
images,
|
594 |
model_name="SAM(sam_vit_b)",
|
595 |
-
node_type="block",
|
596 |
layer=-1,
|
597 |
num_eig=100,
|
|
|
598 |
affinity_focal_gamma=0.3,
|
599 |
num_sample_ncut=10000,
|
600 |
knn_ncut=10,
|
@@ -628,21 +628,21 @@ def main_fn(
|
|
628 |
rgb = dont_use_too_much_green(rgb)
|
629 |
return to_pil_images(rgb)
|
630 |
|
631 |
-
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/
|
632 |
-
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/
|
633 |
|
634 |
demo = gr.Interface(
|
635 |
main_fn,
|
636 |
[
|
637 |
gr.Gallery(value=default_images, label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil"),
|
638 |
gr.Dropdown(["MobileSAM", "SAM(sam_vit_b)", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)"], label="Model", value="MobileSAM", elem_id="model_name"),
|
639 |
-
gr.Dropdown(["attn", "mlp", "block"], label="Node type", value="block", elem_id="node_type", info="attn: attention output, mlp: mlp output, block: sum of residual stream"),
|
640 |
gr.Slider(0, 11, step=1, label="Layer", value=11, elem_id="layer", info="which layer of the image backbone features"),
|
641 |
gr.Slider(1, 1000, step=1, label="Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more object parts, decrease for whole object'),
|
642 |
-
gr.Slider(0.01, 1, step=0.01, label="Affinity focal gamma", value=0.3, elem_id="affinity_focal_gamma", info="decrease for more aggressive cleaning on the affinity matrix"),
|
643 |
],
|
644 |
gr.Gallery(value=default_outputs, label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto"),
|
645 |
additional_inputs=[
|
|
|
|
|
646 |
gr.Slider(100, 10000, step=100, label="num_sample (NCUT)", value=5000, elem_id="num_sample_ncut", info="for Nyström approximation"),
|
647 |
gr.Slider(1, 100, step=1, label="KNN (NCUT)", value=10, elem_id="knn_ncut", info="for Nyström approximation"),
|
648 |
gr.Slider(100, 1000, step=100, label="num_sample (t-SNE)", value=500, elem_id="num_sample_tsne", info="for Nyström approximation. Adding will slow down t-SNE quite a lot"),
|
|
|
592 |
def main_fn(
|
593 |
images,
|
594 |
model_name="SAM(sam_vit_b)",
|
|
|
595 |
layer=-1,
|
596 |
num_eig=100,
|
597 |
+
node_type="block",
|
598 |
affinity_focal_gamma=0.3,
|
599 |
num_sample_ncut=10000,
|
600 |
knn_ncut=10,
|
|
|
628 |
rgb = dont_use_too_much_green(rgb)
|
629 |
return to_pil_images(rgb)
|
630 |
|
631 |
+
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg']
|
632 |
+
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg']
|
633 |
|
634 |
demo = gr.Interface(
|
635 |
main_fn,
|
636 |
[
|
637 |
gr.Gallery(value=default_images, label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil"),
|
638 |
gr.Dropdown(["MobileSAM", "SAM(sam_vit_b)", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)"], label="Model", value="MobileSAM", elem_id="model_name"),
|
|
|
639 |
gr.Slider(0, 11, step=1, label="Layer", value=11, elem_id="layer", info="which layer of the image backbone features"),
|
640 |
gr.Slider(1, 1000, step=1, label="Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more object parts, decrease for whole object'),
|
|
|
641 |
],
|
642 |
gr.Gallery(value=default_outputs, label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto"),
|
643 |
additional_inputs=[
|
644 |
+
gr.Dropdown(["attn", "mlp", "block"], label="Node type", value="block", elem_id="node_type", info="attn: attention output, mlp: mlp output, block: sum of residual stream"),
|
645 |
+
gr.Slider(0.01, 1, step=0.01, label="Affinity focal gamma", value=0.3, elem_id="affinity_focal_gamma", info="decrease for more aggressive cleaning on the affinity matrix"),
|
646 |
gr.Slider(100, 10000, step=100, label="num_sample (NCUT)", value=5000, elem_id="num_sample_ncut", info="for Nyström approximation"),
|
647 |
gr.Slider(1, 100, step=1, label="KNN (NCUT)", value=10, elem_id="knn_ncut", info="for Nyström approximation"),
|
648 |
gr.Slider(100, 1000, step=100, label="num_sample (t-SNE)", value=500, elem_id="num_sample_tsne", info="for Nyström approximation. Adding will slow down t-SNE quite a lot"),
|