Spaces:
Running
on
Zero
Running
on
Zero
add models
Browse files- app.py +6 -3
- requirements.txt +1 -1
app.py
CHANGED
@@ -204,6 +204,8 @@ def ncut_run(
|
|
204 |
video_output=False,
|
205 |
):
|
206 |
logging_str = ""
|
|
|
|
|
207 |
if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
|
208 |
# raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
|
209 |
gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.")
|
@@ -585,9 +587,10 @@ def make_output_images_section():
|
|
585 |
|
586 |
def make_parameters_section():
|
587 |
gr.Markdown("### Parameters <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Help</a>")
|
588 |
-
from ncut_pytorch.backbone import get_demo_model_names
|
589 |
-
model_names =
|
590 |
-
|
|
|
591 |
layer_slider = gr.Slider(1, 12, step=1, label="Backbone: Layer index", value=10, elem_id="layer")
|
592 |
node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
|
593 |
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
|
|
|
204 |
video_output=False,
|
205 |
):
|
206 |
logging_str = ""
|
207 |
+
resolution = RES_DICT[model_name]
|
208 |
+
logging_str += f"Resolution: {resolution}\n"
|
209 |
if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
|
210 |
# raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
|
211 |
gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.")
|
|
|
587 |
|
588 |
def make_parameters_section():
|
589 |
gr.Markdown("### Parameters <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Help</a>")
|
590 |
+
from ncut_pytorch.backbone import list_models, get_demo_model_names
|
591 |
+
model_names = list_models()
|
592 |
+
model_names = sorted(model_names)
|
593 |
+
model_dropdown = gr.Dropdown(model_names, label="Backbone", value="DiNO(dino_vitb8_448)", elem_id="model_name")
|
594 |
layer_slider = gr.Slider(1, 12, step=1, label="Backbone: Layer index", value=10, elem_id="layer")
|
595 |
node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
|
596 |
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
torch
|
2 |
torchvision
|
3 |
-
ncut-pytorch>=1.2.
|
4 |
opencv-python
|
5 |
decord
|
6 |
transformers
|
|
|
1 |
torch
|
2 |
torchvision
|
3 |
+
ncut-pytorch>=1.2.6
|
4 |
opencv-python
|
5 |
decord
|
6 |
transformers
|