huzey commited on
Commit
7311cdd
1 Parent(s): 9237b56

added text models

Browse files
Files changed (3) hide show
  1. app.py +15 -9
  2. app_text.py +304 -0
  3. backbone_text.py +239 -0
app.py CHANGED
@@ -20,7 +20,7 @@ import time
20
  import threading
21
  import os
22
 
23
- from backbone import extract_features, download_all_models, get_model
24
  from backbone import MODEL_DICT, LAYER_DICT, RES_DICT
25
  from ncut_pytorch import NCUT, eigenvector_to_rgb
26
 
@@ -66,7 +66,7 @@ def compute_ncut(
66
  ):
67
  logging_str = ""
68
 
69
- num_nodes = np.prod(features.shape[:3])
70
  if num_nodes / 2 < num_eig:
71
  # raise gr.Error("Number of eigenvectors should be less than half the number of nodes.")
72
  gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.")
@@ -100,7 +100,7 @@ def compute_ncut(
100
  )
101
  logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n"
102
 
103
- rgb = rgb.reshape(features.shape[:3] + (3,))
104
  return rgb, logging_str, eigvecs
105
 
106
 
@@ -584,7 +584,7 @@ def make_output_images_section():
584
  return output_gallery
585
 
586
  def make_parameters_section():
587
- gr.Markdown('### Parameters')
588
  from backbone import get_all_model_names
589
  model_names = get_all_model_names()
590
  model_dropdown = gr.Dropdown(model_names, label="Backbone", value="DiNO(dino_vitb8)", elem_id="model_name")
@@ -605,6 +605,7 @@ def make_parameters_section():
605
  model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=[layer_slider, node_type_dropdown])
606
 
607
  with gr.Accordion("➡️ Click to expand: more parameters", open=False):
 
608
  affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
609
  num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
610
  sampling_method_dropdown = gr.Dropdown(["fps", "random"], label="NCUT: Sampling method", value="fps", elem_id="sampling_method", info="Nyström approximation")
@@ -822,11 +823,12 @@ with demo:
822
  )
823
 
824
  with gr.Tab('Text'):
825
- gr.Markdown('=== under construction ===')
826
- gr.Markdown('Please see the [Documentation](https://ncut-pytorch.readthedocs.io/en/latest/gallery_llama3/) for example of NCUT on text input.')
827
- gr.Markdown('---')
828
- gr.Markdown('![ncut](https://ncut-pytorch.readthedocs.io/en/latest/images/gallery/llama3/llama3_layer_31.jpg)')
829
-
 
830
  with gr.Tab('Compare Models'):
831
  def add_one_model(i_model=1):
832
  with gr.Column(scale=5, min_width=200) as col:
@@ -897,7 +899,11 @@ with demo:
897
 
898
 
899
  if USE_HUGGINGFACE_SPACE:
 
 
 
900
  threading.Thread(target=download_all_models).start()
 
901
  threading.Thread(target=download_all_datasets).start()
902
  demo.launch()
903
  else:
 
20
  import threading
21
  import os
22
 
23
+ from backbone import extract_features, get_model
24
  from backbone import MODEL_DICT, LAYER_DICT, RES_DICT
25
  from ncut_pytorch import NCUT, eigenvector_to_rgb
26
 
 
66
  ):
67
  logging_str = ""
68
 
69
+ num_nodes = np.prod(features.shape[:-1])
70
  if num_nodes / 2 < num_eig:
71
  # raise gr.Error("Number of eigenvectors should be less than half the number of nodes.")
72
  gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.")
 
100
  )
101
  logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n"
102
 
103
+ rgb = rgb.reshape(features.shape[:-1] + (3,))
104
  return rgb, logging_str, eigvecs
105
 
106
 
 
584
  return output_gallery
585
 
586
  def make_parameters_section():
587
+ gr.Markdown("### Parameters <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Help</a>")
588
  from backbone import get_all_model_names
589
  model_names = get_all_model_names()
590
  model_dropdown = gr.Dropdown(model_names, label="Backbone", value="DiNO(dino_vitb8)", elem_id="model_name")
 
605
  model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=[layer_slider, node_type_dropdown])
606
 
607
  with gr.Accordion("➡️ Click to expand: more parameters", open=False):
608
+ gr.Markdown("<a href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Docs: How to Get Better Segmentation</a>")
609
  affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
610
  num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
611
  sampling_method_dropdown = gr.Dropdown(["fps", "random"], label="NCUT: Sampling method", value="fps", elem_id="sampling_method", info="Nyström approximation")
 
823
  )
824
 
825
  with gr.Tab('Text'):
826
+ if USE_HUGGINGFACE_SPACE:
827
+ from app_text import make_demo
828
+ else:
829
+ from draft_gradio_app_text import make_demo
830
+ make_demo()
831
+
832
  with gr.Tab('Compare Models'):
833
  def add_one_model(i_model=1):
834
  with gr.Column(scale=5, min_width=200) as col:
 
899
 
900
 
901
  if USE_HUGGINGFACE_SPACE:
902
+ from backbone import download_all_models
903
+ threading.Thread(target=download_all_models).start()
904
+ from backbone_text import download_all_models
905
  threading.Thread(target=download_all_models).start()
906
+
907
  threading.Thread(target=download_all_datasets).start()
908
  demo.launch()
909
  else:
app_text.py ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # %%
2
+ USE_HUGGINGFACE_SPACE = True
3
+
4
+ if USE_HUGGINGFACE_SPACE: # huggingface ZeroGPU, dynamic GPU allocation
5
+ try:
6
+ import spaces
7
+ except ImportError:
8
+ USE_HUGGINGFACE_SPACE = False # run on local machine
9
+
10
+ import gradio as gr
11
+
12
+ import torch
13
+ import torch.nn.functional as F
14
+ from PIL import Image
15
+ import numpy as np
16
+ import time
17
+ import threading
18
+ import os
19
+ import matplotlib.pyplot as plt
20
+ import matplotlib.colors as mcolors
21
+ import numpy as np
22
+
23
+ from ncut_pytorch import NCUT, eigenvector_to_rgb
24
+
25
+ from backbone_text import MODEL_DICT as TEXT_MODEL_DICT
26
+ from backbone_text import LAYER_DICT as TEXT_LAYER_DICT
27
+
28
+ def compute_ncut(
29
+ features,
30
+ num_eig=100,
31
+ num_sample_ncut=10000,
32
+ affinity_focal_gamma=0.3,
33
+ knn_ncut=10,
34
+ knn_tsne=10,
35
+ embedding_method="UMAP",
36
+ num_sample_tsne=300,
37
+ perplexity=150,
38
+ n_neighbors=150,
39
+ min_dist=0.1,
40
+ sampling_method="fps",
41
+ metric="cosine",
42
+ ):
43
+ logging_str = ""
44
+ print("running ncut")
45
+ print(features.shape)
46
+ num_nodes = np.prod(features.shape[:-1])
47
+ if num_nodes / 2 < num_eig:
48
+ # raise gr.Error("Number of eigenvectors should be less than half the number of nodes.")
49
+ gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.")
50
+ num_eig = num_nodes // 2 - 1
51
+ logging_str += f"Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.\n"
52
+
53
+ start = time.time()
54
+ eigvecs, eigvals = NCUT(
55
+ num_eig=num_eig,
56
+ num_sample=num_sample_ncut,
57
+ device="cuda" if torch.cuda.is_available() else "cpu",
58
+ affinity_focal_gamma=affinity_focal_gamma,
59
+ knn=knn_ncut,
60
+ sample_method=sampling_method,
61
+ distance=metric,
62
+ normalize_features=False,
63
+ ).fit_transform(features.reshape(-1, features.shape[-1]))
64
+ # print(f"NCUT time: {time.time() - start:.2f}s")
65
+ logging_str += f"NCUT time: {time.time() - start:.2f}s\n"
66
+
67
+ start = time.time()
68
+ _, rgb = eigenvector_to_rgb(
69
+ eigvecs,
70
+ method=embedding_method,
71
+ num_sample=num_sample_tsne,
72
+ perplexity=perplexity,
73
+ n_neighbors=n_neighbors,
74
+ min_distance=min_dist,
75
+ knn=knn_tsne,
76
+ device="cuda" if torch.cuda.is_available() else "cpu",
77
+ )
78
+ logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n"
79
+
80
+ rgb = rgb.reshape(features.shape[:-1] + (3,))
81
+ return rgb, logging_str, eigvecs
82
+
83
+
84
+ def make_plot(token_texts, rgb, num_lines=50, title=""):
85
+ fig, ax = plt.subplots(figsize=(10, 20))
86
+ # Define the colors
87
+ # fill nan with 0
88
+ rgb = np.nan_to_num(rgb)
89
+ colors = [mcolors.rgb2hex(rgb[i]) for i in range(len(token_texts))]
90
+
91
+ # Split the sentence into words
92
+ words = token_texts
93
+
94
+ y_pos = 0.96
95
+ x_pos = 0.0
96
+ max_word_length = max(len(word) for word in words)
97
+ count = 0
98
+ for word, color in zip(words, colors):
99
+ if '\n' in word:
100
+ word = word.replace('\n', '')
101
+ y_pos -= 0.025
102
+ x_pos = 0.0
103
+ count += 1
104
+ if count >= num_lines:
105
+ break
106
+
107
+ text_color = 'black' if sum(mcolors.hex2color(color)) > 1.3 else 'white' # Choose text color based on background color
108
+ # text_color = 'black'
109
+ txt = ax.text(x_pos, y_pos, word, color=text_color, fontsize=12, bbox=dict(facecolor=color, alpha=0.8, edgecolor='none', pad=2))
110
+ txt_width = txt.get_window_extent().width / (fig.dpi * fig.get_size_inches()[0]) # Calculate the width of the text in inches
111
+
112
+ x_pos += txt_width * 1.2 + 0.01 # Adjust the spacing between words
113
+
114
+ if x_pos > 0.97:
115
+ y_pos -= 0.025
116
+ x_pos = 0.0
117
+ count += 1
118
+ if count >= num_lines:
119
+ break
120
+ # break
121
+
122
+ # Remove the axis ticks and spines
123
+ ax.set_xticks([])
124
+ ax.set_yticks([])
125
+ ax.spines['top'].set_visible(False)
126
+ ax.spines['right'].set_visible(False)
127
+ ax.spines['bottom'].set_visible(False)
128
+ ax.spines['left'].set_visible(False)
129
+
130
+ ax.set_title(title, fontsize=20)
131
+
132
+ return fig
133
+
134
+
135
+
136
+ def ncut_run(
137
+ model,
138
+ text,
139
+ model_name,
140
+ layer=-1,
141
+ num_eig=100,
142
+ node_type="block",
143
+ affinity_focal_gamma=0.3,
144
+ num_sample_ncut=10000,
145
+ knn_ncut=10,
146
+ embedding_method="UMAP",
147
+ num_sample_tsne=1000,
148
+ knn_tsne=10,
149
+ perplexity=500,
150
+ n_neighbors=500,
151
+ min_dist=0.1,
152
+ sampling_method="fps",
153
+ ):
154
+ logging_str = ""
155
+ if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
156
+ # raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
157
+ gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.")
158
+ logging_str += f"Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.\n"
159
+ perplexity = num_sample_tsne - 1
160
+ n_neighbors = num_sample_tsne - 1
161
+
162
+ if torch.cuda.is_available():
163
+ torch.cuda.empty_cache()
164
+
165
+ node_type = node_type.split(":")[0].strip()
166
+
167
+ model = model.to("cuda" if torch.cuda.is_available() else "cpu")
168
+
169
+ start = time.time()
170
+ out = model(text)
171
+ features = out[node_type][layer-1].squeeze(0).detach().float()
172
+ token_texts = out["token_texts"]
173
+
174
+ if perplexity >= features.shape[0] or n_neighbors >= features.shape[0]:
175
+ # raise gr.Error("Perplexity must be less than the number of samples.")
176
+ gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {features.shape[0]-1}.")
177
+ logging_str += f"Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {features.shape[0]-1}.\n"
178
+ perplexity = features.shape[0] - 1
179
+ n_neighbors = features.shape[0] - 1
180
+
181
+ # print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
182
+ logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
183
+
184
+ rgb, _logging_str, _ = compute_ncut(
185
+ features,
186
+ num_eig=num_eig,
187
+ num_sample_ncut=num_sample_ncut,
188
+ affinity_focal_gamma=affinity_focal_gamma,
189
+ knn_ncut=knn_ncut,
190
+ knn_tsne=knn_tsne,
191
+ num_sample_tsne=num_sample_tsne,
192
+ embedding_method=embedding_method,
193
+ perplexity=perplexity,
194
+ n_neighbors=n_neighbors,
195
+ min_dist=min_dist,
196
+ sampling_method=sampling_method,
197
+ )
198
+ logging_str += _logging_str
199
+
200
+ title = f"{model_name}, Layer {layer}, {node_type}"
201
+ fig = make_plot(token_texts, rgb, title=title)
202
+ return fig, logging_str
203
+
204
+ def _ncut_run(*args, **kwargs):
205
+ try:
206
+ ret = ncut_run(*args, **kwargs)
207
+ if torch.cuda.is_available():
208
+ torch.cuda.empty_cache()
209
+ return ret
210
+ except Exception as e:
211
+ gr.Error(str(e))
212
+ if torch.cuda.is_available():
213
+ torch.cuda.empty_cache()
214
+ return None, "Error: " + str(e)
215
+
216
+ if USE_HUGGINGFACE_SPACE:
217
+ @spaces.GPU(duration=30)
218
+ def __ncut_run(*args, **kwargs):
219
+ return _ncut_run(*args, **kwargs)
220
+ else:
221
+ def __ncut_run(*args, **kwargs):
222
+ return _ncut_run(*args, **kwargs)
223
+
224
+ def real_run(model_name, text, layer, node_type, num_eig, affinity_focal_gamma, num_sample_ncut, knn_ncut, embedding_method, num_sample_tsne, knn_tsne, perplexity, n_neighbors, min_dist, sampling_method):
225
+ model = TEXT_MODEL_DICT[model_name]()
226
+ return __ncut_run(model, text, model_name, layer, num_eig, node_type,
227
+ affinity_focal_gamma, num_sample_ncut, knn_ncut, embedding_method,
228
+ num_sample_tsne, knn_tsne, perplexity, n_neighbors, min_dist, sampling_method)
229
+
230
+ lines = \
231
+ """1. The majestic giraffe, with its towering height and distinctive long neck, roams the savannas of Africa. These gentle giants use their elongated tongues to pluck leaves from the tallest trees, making them well-adapted to their environment. Their unique coat patterns, much like human fingerprints, are unique to each individual.
232
+ 2. Penguins, the tuxedoed birds of the Antarctic, are expert swimmers and divers. These flightless seabirds rely on their dense, waterproof feathers and streamlined bodies to propel through icy waters in search of fish, krill, and other marine life. Their huddled colonies and amusing waddles make them a favorite among wildlife enthusiasts.
233
+ 3. The mighty African elephant, the largest land mammal, is revered for its intelligence and strong family bonds. These gentle giants use their versatile trunks for various tasks, from drinking and feeding to communicating and greeting one another. Their massive ears and wrinkled skin make them an iconic symbol of the African wilderness.
234
+ 4. The colorful and flamboyant peacock, native to Asia, is known for its stunning iridescent plumage. During mating season, the males fan out their magnificent train of feathers, adorned with intricate eye-like patterns, in an elaborate courtship display to attract potential mates, making them a true spectacle of nature.
235
+ 5. The sleek and powerful cheetah, the fastest land animal, is built for speed and agility. With its distinctive black tear-like markings and slender body, this feline predator can reach top speeds of up to 70 mph during short bursts, allowing it to chase down its prey with remarkable precision.
236
+ 6. The playful and intelligent dolphin, a highly social marine mammal, is known for its friendly demeanor and impressive acrobatic abilities. These aquatic creatures use echolocation to navigate and hunt, and their complex communication systems have long fascinated researchers studying their intricate social structures and cognitive abilities.
237
+ 7. The majestic bald eagle, the national emblem of the United States, soars high above with its distinctive white head and tail feathers. These powerful raptors are skilled hunters, swooping down from great heights to catch fish and other prey with their sharp talons, making them an iconic symbol of strength and freedom.
238
+ 8. The industrious beaver, nature's skilled engineers, are known for their remarkable ability to construct dams and lodges using their sharp incisors and webbed feet. These semiaquatic rodents play a crucial role in shaping their aquatic ecosystems, creating habitats for numerous other species while demonstrating their ingenuity and perseverance.
239
+ 9. The vibrant and enchanting hummingbird, one of the smallest bird species, is a true marvel of nature. With their rapidly flapping wings and ability to hover in mid-air, these tiny feathered creatures are expert pollinators, flitting from flower to flower in search of nectar and playing a vital role in plant reproduction.
240
+ 10. The majestic polar bear, the apex predator of the Arctic, is perfectly adapted to its icy environment. With its thick insulating fur and specialized paws for gripping the ice, this powerful carnivore relies on its exceptional hunting skills and keen senses to locate and capture seals, its primary prey, in the harsh Arctic landscape.
241
+ """
242
+
243
+ def make_demo():
244
+ with gr.Row():
245
+ with gr.Column(scale=5, min_width=200):
246
+ gr.Markdown("### Input Text")
247
+ placeholder = lines
248
+ input_text = gr.Text(value=placeholder, label="Input Text", placeholder="Type here", lines=12)
249
+ submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary')
250
+ clear_button = gr.Button("🗑️Clear", elem_id='clear_button', variant='stop')
251
+ with gr.Column(scale=5, min_width=200):
252
+ gr.Markdown("### Parameters <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Help</a>")
253
+ model_name = gr.Dropdown(list(TEXT_MODEL_DICT.keys()), label="Model", value="meta-llama/Meta-Llama-3.1-8B")
254
+ layer = gr.Slider(1, 32, step=1, value=32, label="Layer")
255
+ node_type = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Node Type", value="block: sum of residual")
256
+ num_eig = gr.Slider(minimum=1, maximum=1000, step=1, value=100, label="Number of Eigenvectors")
257
+
258
+ with gr.Accordion("➡️ Click to expand: more parameters", open=False):
259
+ gr.Markdown("<a href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Docs: How to Get Better Segmentation</a>")
260
+ affinity_focal_gamma = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.3, label="Affinity Focal Gamma")
261
+ num_sample_ncut = gr.Slider(minimum=100, maximum=50000, step=100, value=10000, label="Number of Samples for NCUT")
262
+ sampling_method_dropdown = gr.Dropdown(["fps", "random"], label="Sampling method", value="fps", elem_id="sampling_method")
263
+ knn_ncut = gr.Slider(minimum=1, maximum=100, step=1, value=10, label="KNN for NCUT")
264
+ embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_shpere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
265
+ num_sample_tsne_slider = gr.Slider(100, 10000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
266
+ knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation")
267
+ perplexity_slider = gr.Slider(10, 1000, step=10, label="t-SNE: Perplexity", value=150, elem_id="perplexity")
268
+ n_neighbors_slider = gr.Slider(10, 1000, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors")
269
+ min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist")
270
+ logging_str = gr.Textbox("", label="Logging Information", placeholder="Logging",)
271
+
272
+ with gr.Row():
273
+ gr.Markdown("### Output Embedding")
274
+ output_image = gr.Plot(label="NCUT Output", min_width=1920)
275
+
276
+ def change_layer_slider(model_name):
277
+ layer_dict = TEXT_LAYER_DICT
278
+ if model_name in layer_dict:
279
+ value = layer_dict[model_name]
280
+ return (gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True),
281
+ gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?"))
282
+ else:
283
+ value = 12
284
+ return (gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?"),
285
+ gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True))
286
+ model_name.change(fn=change_layer_slider, inputs=model_name, outputs=[layer, node_type])
287
+
288
+ clear_button.click(lambda x: (None, None), outputs=[input_text, output_image])
289
+ submit_button.click(real_run, inputs=[
290
+ model_name, input_text, layer, node_type, num_eig,
291
+ affinity_focal_gamma, num_sample_ncut, knn_ncut,
292
+ embedding_method_dropdown, num_sample_tsne_slider,
293
+ knn_tsne_slider, perplexity_slider, n_neighbors_slider,
294
+ min_dist_slider, sampling_method_dropdown
295
+ ],
296
+ outputs=[output_image, logging_str],
297
+ )
298
+
299
+
300
+
301
+ if __name__ == "__main__":
302
+ with gr.Blocks() as demo:
303
+ make_demo()
304
+ demo.launch(share=True)
backbone_text.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # %%
2
+ #
3
+ from typing import List, Union
4
+ import torch
5
+ import os
6
+ from torch import nn
7
+ from typing import Optional, Tuple
8
+
9
+ from functools import partial
10
+
11
+ MODEL_DICT = {}
12
+ LAYER_DICT = {}
13
+
14
+ class Llama(nn.Module):
15
+ def __init__(self, model_id="meta-llama/Meta-Llama-3.1-8B"):
16
+ super().__init__()
17
+
18
+ import transformers
19
+
20
+ access_token = os.getenv("HF_ACCESS_TOKEN")
21
+ if access_token is None:
22
+ raise ValueError("HF_ACCESS_TOKEN environment variable must be set")
23
+
24
+ pipeline = transformers.pipeline(
25
+ "text-generation",
26
+ model=model_id,
27
+ model_kwargs={"torch_dtype": torch.bfloat16},
28
+ token=access_token,
29
+ device='cpu',
30
+ )
31
+
32
+ tokenizer = pipeline.tokenizer
33
+ model = pipeline.model
34
+
35
+ def new_forward(
36
+ self,
37
+ hidden_states: torch.Tensor,
38
+ attention_mask: Optional[torch.Tensor] = None,
39
+ position_ids: Optional[torch.LongTensor] = None,
40
+ past_key_value = None,
41
+ output_attentions: Optional[bool] = False,
42
+ use_cache: Optional[bool] = False,
43
+ cache_position: Optional[torch.LongTensor] = None,
44
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
45
+ **kwargs,
46
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
47
+ residual = hidden_states
48
+
49
+ hidden_states = self.input_layernorm(hidden_states)
50
+
51
+ # Self Attention
52
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
53
+ hidden_states=hidden_states,
54
+ attention_mask=attention_mask,
55
+ position_ids=position_ids,
56
+ past_key_value=past_key_value,
57
+ output_attentions=output_attentions,
58
+ use_cache=use_cache,
59
+ cache_position=cache_position,
60
+ position_embeddings=position_embeddings,
61
+ **kwargs,
62
+ )
63
+
64
+ self.attn_output = hidden_states.clone()
65
+
66
+ hidden_states = residual + hidden_states
67
+
68
+ # Fully Connected
69
+ residual = hidden_states
70
+ hidden_states = self.post_attention_layernorm(hidden_states)
71
+ hidden_states = self.mlp(hidden_states)
72
+
73
+ self.mlp_output = hidden_states.clone()
74
+
75
+ hidden_states = residual + hidden_states
76
+
77
+ self.block_output = hidden_states.clone()
78
+
79
+ outputs = (hidden_states,)
80
+
81
+ if output_attentions:
82
+ outputs += (self_attn_weights,)
83
+
84
+ if use_cache:
85
+ outputs += (present_key_value,)
86
+
87
+ return outputs
88
+
89
+ # for layer in model.model.layers:
90
+ # setattr(layer.__class__, "forward", new_forward)
91
+ # setattr(layer.__class__, "__call__", new_forward)
92
+ setattr(model.model.layers[0].__class__, "forward", new_forward)
93
+ setattr(model.model.layers[0].__class__, "__call__", new_forward)
94
+
95
+ self.model = model
96
+ self.tokenizer = tokenizer
97
+
98
+ @torch.no_grad()
99
+ def forward(self, text: str):
100
+ encoded_input = self.tokenizer(text, return_tensors='pt')
101
+ device = next(self.model.parameters()).device
102
+ encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
103
+ output = self.model(**encoded_input, output_hidden_states=True)
104
+
105
+ attn_outputs, mlp_outputs, block_outputs = [], [], []
106
+ for i, blk in enumerate(self.model.model.layers):
107
+ attn_outputs.append(blk.attn_output)
108
+ mlp_outputs.append(blk.mlp_output)
109
+ block_outputs.append(blk.block_output)
110
+
111
+ token_ids = encoded_input['input_ids']
112
+ token_texts = [self.tokenizer.decode([token_id]) for token_id in token_ids[0]]
113
+
114
+ return {"attn": attn_outputs, "mlp": mlp_outputs, "block": block_outputs, "token_texts": token_texts}
115
+
116
+ MODEL_DICT["meta-llama/Meta-Llama-3.1-8B"] = partial(Llama, model_id="meta-llama/Meta-Llama-3.1-8B")
117
+ LAYER_DICT["meta-llama/Meta-Llama-3.1-8B"] = 32
118
+ MODEL_DICT["meta-llama/Meta-Llama-3-8B"] = partial(Llama, model_id="meta-llama/Meta-Llama-3-8B")
119
+ LAYER_DICT["meta-llama/Meta-Llama-3-8B"] = 32
120
+
121
+ class GPT2(nn.Module):
122
+ def __init__(self):
123
+ super().__init__()
124
+ from transformers import GPT2Tokenizer, GPT2Model
125
+ tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
126
+ model = GPT2Model.from_pretrained('gpt2')
127
+
128
+ def new_forward(
129
+ self,
130
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
131
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
132
+ attention_mask: Optional[torch.FloatTensor] = None,
133
+ head_mask: Optional[torch.FloatTensor] = None,
134
+ encoder_hidden_states: Optional[torch.Tensor] = None,
135
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
136
+ use_cache: Optional[bool] = False,
137
+ output_attentions: Optional[bool] = False,
138
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
139
+ residual = hidden_states
140
+ hidden_states = self.ln_1(hidden_states)
141
+ attn_outputs = self.attn(
142
+ hidden_states,
143
+ layer_past=layer_past,
144
+ attention_mask=attention_mask,
145
+ head_mask=head_mask,
146
+ use_cache=use_cache,
147
+ output_attentions=output_attentions,
148
+ )
149
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
150
+ outputs = attn_outputs[1:]
151
+ # residual connection
152
+ self.attn_output = attn_output.clone()
153
+ hidden_states = attn_output + residual
154
+
155
+ if encoder_hidden_states is not None:
156
+ # add one self-attention block for cross-attention
157
+ if not hasattr(self, "crossattention"):
158
+ raise ValueError(
159
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
160
+ "cross-attention layers by setting `config.add_cross_attention=True`"
161
+ )
162
+ residual = hidden_states
163
+ hidden_states = self.ln_cross_attn(hidden_states)
164
+ cross_attn_outputs = self.crossattention(
165
+ hidden_states,
166
+ attention_mask=attention_mask,
167
+ head_mask=head_mask,
168
+ encoder_hidden_states=encoder_hidden_states,
169
+ encoder_attention_mask=encoder_attention_mask,
170
+ output_attentions=output_attentions,
171
+ )
172
+ attn_output = cross_attn_outputs[0]
173
+ # residual connection
174
+ hidden_states = residual + attn_output
175
+ outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
176
+
177
+ residual = hidden_states
178
+ hidden_states = self.ln_2(hidden_states)
179
+ feed_forward_hidden_states = self.mlp(hidden_states)
180
+ # residual connection
181
+ self.mlp_output = feed_forward_hidden_states.clone()
182
+ hidden_states = residual + feed_forward_hidden_states
183
+
184
+ if use_cache:
185
+ outputs = (hidden_states,) + outputs
186
+ else:
187
+ outputs = (hidden_states,) + outputs[1:]
188
+
189
+ self.block_output = hidden_states.clone()
190
+ return outputs # hidden_states, present, (attentions, cross_attentions)
191
+
192
+ setattr(model.h[0].__class__, "forward", new_forward)
193
+
194
+ self.model = model
195
+ self.tokenizer = tokenizer
196
+
197
+ @torch.no_grad()
198
+ def forward(self, text: str):
199
+ encoded_input = self.tokenizer(text, return_tensors='pt')
200
+ device = next(self.model.parameters()).device
201
+ encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
202
+ output = self.model(**encoded_input, output_hidden_states=True)
203
+
204
+ attn_outputs, mlp_outputs, block_outputs = [], [], []
205
+ for i, blk in enumerate(self.model.h):
206
+ attn_outputs.append(blk.attn_output)
207
+ mlp_outputs.append(blk.mlp_output)
208
+ block_outputs.append(blk.block_output)
209
+
210
+ token_ids = encoded_input['input_ids']
211
+ token_texts = [self.tokenizer.decode([token_id]) for token_id in token_ids[0]]
212
+
213
+ return {"attn": attn_outputs, "mlp": mlp_outputs, "block": block_outputs, "token_texts": token_texts}
214
+
215
+ MODEL_DICT["gpt2"] = GPT2
216
+ LAYER_DICT["gpt2"] = 12
217
+
218
+
219
+ def download_all_models():
220
+ for model_name in MODEL_DICT:
221
+ print(f"Downloading {model_name}")
222
+ try:
223
+ model = MODEL_DICT[model_name]()
224
+ except Exception as e:
225
+ print(f"Error downloading {model_name}: {e}")
226
+ continue
227
+
228
+
229
+ if __name__ == '__main__':
230
+
231
+ model = MODEL_DICT["meta-llama/Meta-Llama-3-8B"]()
232
+ # model = MODEL_DICT["gpt2"]()
233
+ text = """
234
+ 1. The majestic giraffe, with its towering height and distinctive long neck, roams the savannas of Africa. These gentle giants use their elongated tongues to pluck leaves from the tallest trees, making them well-adapted to their environment. Their unique coat patterns, much like human fingerprints, are unique to each individual.
235
+ """
236
+ model = model.cuda()
237
+ output = model(text)
238
+ print(output["block"][1].shape)
239
+ print(output["token_texts"])