huzey commited on
Commit
83bc547
1 Parent(s): b74468d

update full-screen

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -880,7 +880,7 @@ def make_dataset_images_section(advanced=False, is_random=False):
880
 
881
  def make_output_images_section():
882
  gr.Markdown('### Output Images')
883
- output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto")
884
  return output_gallery
885
 
886
  def make_parameters_section(is_lisa=False):
@@ -1075,13 +1075,13 @@ with demo:
1075
  with gr.Row():
1076
  with gr.Column(scale=5, min_width=200):
1077
  gr.Markdown('### Output (Recursion #1)')
1078
- l1_gallery = gr.Gallery(value=[], label="Recursion #1", show_label=False, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto")
1079
  with gr.Column(scale=5, min_width=200):
1080
  gr.Markdown('### Output (Recursion #2)')
1081
- l2_gallery = gr.Gallery(value=[], label="Recursion #2", show_label=False, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto")
1082
  with gr.Column(scale=5, min_width=200):
1083
  gr.Markdown('### Output (Recursion #3)')
1084
- l3_gallery = gr.Gallery(value=[], label="Recursion #3", show_label=False, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto")
1085
  with gr.Row():
1086
  with gr.Column(scale=5, min_width=200):
1087
  input_gallery, submit_button, clear_images_button = make_input_images_section()
@@ -1200,15 +1200,15 @@ with demo:
1200
  with gr.Row():
1201
  with gr.Column(scale=5, min_width=200):
1202
  gr.Markdown('### Output (Prompt #1)')
1203
- l1_gallery = gr.Gallery(value=[], label="Prompt #1", show_label=False, elem_id="ncut_p1", columns=[3], rows=[5], object_fit="contain", height="auto")
1204
  prompt1 = gr.Textbox(label="Input Prompt #1", elem_id="prompt1", value="where is the person, include the clothes, don't include the guitar and chair", lines=3)
1205
  with gr.Column(scale=5, min_width=200):
1206
  gr.Markdown('### Output (Prompt #2)')
1207
- l2_gallery = gr.Gallery(value=[], label="Prompt #2", show_label=False, elem_id="ncut_p2", columns=[3], rows=[5], object_fit="contain", height="auto")
1208
  prompt2 = gr.Textbox(label="Input Prompt #2", elem_id="prompt2", value="where is the Gibson Les Pual guitar", lines=3)
1209
  with gr.Column(scale=5, min_width=200):
1210
  gr.Markdown('### Output (Prompt #3)')
1211
- l3_gallery = gr.Gallery(value=[], label="Prompt #3", show_label=False, elem_id="ncut_p3", columns=[3], rows=[5], object_fit="contain", height="auto")
1212
  prompt3 = gr.Textbox(label="Input Prompt #3", elem_id="prompt3", value="where is the floor", lines=3)
1213
 
1214
  with gr.Row():
@@ -1288,7 +1288,7 @@ with demo:
1288
  # for i_layer in range(1, 13):
1289
  # with gr.Column(scale=5, min_width=200):
1290
  # gr.Markdown(f'### {model_name} Layer {i_layer}')
1291
- # output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto")
1292
  # galleries.append(output_gallery)
1293
 
1294
 
@@ -1316,7 +1316,7 @@ with demo:
1316
  def add_one_model(i_model=1):
1317
  with gr.Column(scale=5, min_width=200) as col:
1318
  gr.Markdown(f'### Output Images')
1319
- output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto")
1320
  submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary')
1321
  [
1322
  model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
@@ -1385,7 +1385,7 @@ with demo:
1385
  buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1])
1386
 
1387
 
1388
- with gr.Tab('About'):
1389
  gr.Markdown("##### This demo is for python package `ncut-pytorch`, please visit the [Documentation](https://ncut-pytorch.readthedocs.io/) ")
1390
  gr.Markdown("---")
1391
  gr.Markdown("**Normalized Cuts**, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.")
 
880
 
881
  def make_output_images_section():
882
  gr.Markdown('### Output Images')
883
+ output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=False, show_share_button=True)
884
  return output_gallery
885
 
886
  def make_parameters_section(is_lisa=False):
 
1075
  with gr.Row():
1076
  with gr.Column(scale=5, min_width=200):
1077
  gr.Markdown('### Output (Recursion #1)')
1078
+ l1_gallery = gr.Gallery(value=[], label="Recursion #1", show_label=False, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True)
1079
  with gr.Column(scale=5, min_width=200):
1080
  gr.Markdown('### Output (Recursion #2)')
1081
+ l2_gallery = gr.Gallery(value=[], label="Recursion #2", show_label=False, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True)
1082
  with gr.Column(scale=5, min_width=200):
1083
  gr.Markdown('### Output (Recursion #3)')
1084
+ l3_gallery = gr.Gallery(value=[], label="Recursion #3", show_label=False, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True)
1085
  with gr.Row():
1086
  with gr.Column(scale=5, min_width=200):
1087
  input_gallery, submit_button, clear_images_button = make_input_images_section()
 
1200
  with gr.Row():
1201
  with gr.Column(scale=5, min_width=200):
1202
  gr.Markdown('### Output (Prompt #1)')
1203
+ l1_gallery = gr.Gallery(value=[], label="Prompt #1", show_label=False, elem_id="ncut_p1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True)
1204
  prompt1 = gr.Textbox(label="Input Prompt #1", elem_id="prompt1", value="where is the person, include the clothes, don't include the guitar and chair", lines=3)
1205
  with gr.Column(scale=5, min_width=200):
1206
  gr.Markdown('### Output (Prompt #2)')
1207
+ l2_gallery = gr.Gallery(value=[], label="Prompt #2", show_label=False, elem_id="ncut_p2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True)
1208
  prompt2 = gr.Textbox(label="Input Prompt #2", elem_id="prompt2", value="where is the Gibson Les Pual guitar", lines=3)
1209
  with gr.Column(scale=5, min_width=200):
1210
  gr.Markdown('### Output (Prompt #3)')
1211
+ l3_gallery = gr.Gallery(value=[], label="Prompt #3", show_label=False, elem_id="ncut_p3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True)
1212
  prompt3 = gr.Textbox(label="Input Prompt #3", elem_id="prompt3", value="where is the floor", lines=3)
1213
 
1214
  with gr.Row():
 
1288
  # for i_layer in range(1, 13):
1289
  # with gr.Column(scale=5, min_width=200):
1290
  # gr.Markdown(f'### {model_name} Layer {i_layer}')
1291
+ # output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True)
1292
  # galleries.append(output_gallery)
1293
 
1294
 
 
1316
  def add_one_model(i_model=1):
1317
  with gr.Column(scale=5, min_width=200) as col:
1318
  gr.Markdown(f'### Output Images')
1319
+ output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True)
1320
  submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary')
1321
  [
1322
  model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
 
1385
  buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1])
1386
 
1387
 
1388
+ with gr.Tab('📄About'):
1389
  gr.Markdown("##### This demo is for python package `ncut-pytorch`, please visit the [Documentation](https://ncut-pytorch.readthedocs.io/) ")
1390
  gr.Markdown("---")
1391
  gr.Markdown("**Normalized Cuts**, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.")