File size: 192,344 Bytes
86da6bf
 
4fa11ec
3af1fcf
4fa6c93
4e7b524
b74468d
4fa6c93
6dceac4
e9899b2
3af1fcf
0269da3
b74468d
4e7b524
b74468d
4e7b524
6dceac4
645651e
5c0c30a
6dceac4
645651e
 
 
 
 
 
976cf1e
6dceac4
 
86da6bf
68b0288
 
2b98806
7a2c457
2b98806
 
07462e7
6573567
2b98806
be4c20b
 
47ba996
b50d4dc
2b98806
b806945
 
 
 
 
 
 
 
 
eedb910
b806945
b50d4dc
b806945
90aff07
 
 
b806945
 
 
 
 
 
2fbda21
48bc263
b806945
2fbda21
b806945
 
 
 
 
 
 
 
 
 
 
 
48bc263
b806945
 
48bc263
 
b806945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2c457
 
 
 
b806945
 
 
 
 
 
 
 
2b98806
 
 
 
 
 
 
 
c320745
47ba996
68b0288
 
 
c320745
22848f4
5ca0c5b
22848f4
 
3d40e53
1075d8a
3d40e53
edc0dc6
86da6bf
7311cdd
86da6bf
 
 
 
 
 
07462e7
3d40e53
2b98806
 
 
68b0288
2b98806
 
86da6bf
5ca0c5b
7a2c457
22848f4
 
2b98806
edc0dc6
 
07462e7
 
3d40e53
86da6bf
 
 
47ba996
86da6bf
 
 
 
 
 
 
 
 
7311cdd
5ca0c5b
2b98806
 
5dac5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a168d1
 
 
5dac5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b98806
 
 
 
 
 
 
 
 
 
47ba996
9e43ce3
51d0dee
9e43ce3
47ba996
 
 
 
 
 
 
 
 
 
88c1ef1
2b98806
5ca0c5b
 
 
 
 
e85b6ae
5ca0c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e43ce3
bce60e0
9e43ce3
 
9cd819b
 
bce60e0
9cd819b
 
 
5ca0c5b
f1aaf40
94eb803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ca0c5b
4e7b524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0269da3
319a391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d21d31
319a391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d21d31
 
319a391
 
 
 
 
 
 
 
0269da3
 
3d40e53
 
 
 
4e7b524
 
734e8a4
 
 
319a391
 
734e8a4
 
 
753a147
319a391
753a147
 
 
3d40e53
 
 
4e7b524
 
 
3d40e53
 
 
 
 
 
4d21d31
 
3d40e53
 
 
 
 
4e7b524
 
 
 
 
 
 
 
 
 
 
3d40e53
a3d5c5a
4e7b524
 
3d40e53
 
 
 
 
 
 
4d75059
3d40e53
4e7b524
3d40e53
 
 
d90f66b
 
3d40e53
 
4e7b524
3d40e53
2ade645
3d40e53
0269da3
3d40e53
 
 
 
 
 
734e8a4
 
 
 
 
 
 
 
 
4e7b524
a3d5c5a
0269da3
 
4e7b524
 
0269da3
4e7b524
 
 
a3d5c5a
 
3d40e53
4e7b524
 
0269da3
4e7b524
0269da3
e9899b2
 
0269da3
e9899b2
4e7b524
0269da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3d5c5a
753a147
4e7b524
0269da3
319a391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0269da3
 
 
319a391
 
 
 
 
 
 
 
 
4e7b524
edc0dc6
7a2c457
2b98806
4e7b524
 
2b98806
a48bd1b
4e7b524
2b98806
 
4e7b524
47ba996
2b98806
 
 
c320745
 
22848f4
 
 
 
88c1ef1
5ca0c5b
 
 
 
044c4c8
 
 
5ca0c5b
4fa11ec
 
 
 
753a147
 
 
2b98806
2ade645
5dac5bc
 
3d40e53
 
 
edc0dc6
94eb803
 
b74468d
94eb803
 
e9af887
68b0288
2b98806
86da6bf
 
2b98806
68b0288
7a2c457
 
 
68b0288
 
7a2c457
07462e7
94eb803
 
 
4fa11ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94eb803
 
 
 
5dac5bc
 
 
 
 
edc0dc6
 
6def0f2
07462e7
3d40e53
 
5ca0c5b
 
2ade645
6706a30
5ca0c5b
3d40e53
5ca0c5b
 
3d40e53
5ca0c5b
 
 
 
6706a30
5ca0c5b
 
 
 
47ba996
5ca0c5b
 
 
 
22848f4
 
 
3d40e53
5ca0c5b
 
2ade645
80937a3
 
 
 
 
3d40e53
80937a3
 
 
 
 
 
 
 
 
 
 
7a2c457
 
2ade645
 
 
b1e189a
 
 
2ade645
 
 
 
 
 
 
 
 
 
 
 
319a391
2ade645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c1ef1
 
 
3d40e53
 
88c1ef1
6dceac4
88c1ef1
5ca0c5b
88c1ef1
 
88feeb8
88c1ef1
88feeb8
28c6e21
1efccb8
88c1ef1
47ba996
88c1ef1
 
 
 
22848f4
 
 
3d40e53
88c1ef1
 
 
06d24e2
5ca0c5b
4e7b524
753a147
 
5dac5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
753a147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ca0c5b
 
3d40e53
5ca0c5b
 
6bb0b0a
5ca0c5b
753a147
 
4d21d31
753a147
 
 
 
 
 
 
734e8a4
319a391
 
 
0269da3
753a147
 
 
4d21d31
753a147
 
 
 
 
 
 
 
734e8a4
 
 
 
753a147
 
2ade645
319a391
753a147
 
4e7b524
2b98806
86da6bf
4d21d31
4a168d1
 
 
6706a30
4a168d1
6706a30
4a168d1
 
4e7b524
4a168d1
 
 
 
 
 
 
 
 
 
 
8c6fc00
6dceac4
c4b0a8e
86da6bf
 
8c6fc00
c4b0a8e
86da6bf
 
d245991
86da6bf
 
 
 
 
 
 
1efccb8
 
 
86da6bf
6dceac4
86da6bf
 
 
 
 
 
 
 
 
 
 
1efccb8
 
 
68b0288
5ca0c5b
 
 
 
 
 
 
 
 
 
 
 
 
04cb121
7a2c457
 
 
 
 
04cb121
 
 
 
 
 
7a2c457
 
4e7b524
 
 
 
22610e0
 
 
4e7b524
 
 
b74468d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9899b2
 
 
 
 
b74468d
 
e9899b2
 
 
b74468d
 
 
94eb803
 
5e7bae6
 
 
 
 
 
 
94eb803
 
 
 
 
 
 
 
b7c5735
 
 
 
 
 
94eb803
4fa11ec
 
560d63b
 
8c6fc00
 
4e7b524
 
8c6fc00
 
560d63b
 
4fa11ec
 
 
 
4e7b524
8c6fc00
 
22848f4
 
4e7b524
47ba996
4e7b524
8c6fc00
4e7b524
 
8c6fc00
22848f4
 
88c1ef1
5ca0c5b
 
 
 
 
044c4c8
 
 
5dac5bc
 
 
4e7b524
753a147
 
734e8a4
5dac5bc
8c6fc00
4a168d1
3d40e53
 
 
 
8c6fc00
5c1d3a1
4e7b524
8c6fc00
3d40e53
5ca0c5b
 
 
 
 
22848f4
86da6bf
7a2c457
 
94eb803
 
da6c997
94eb803
 
7a2c457
04cb121
 
7a2c457
2b5e956
3d40e53
d8f9231
935e622
 
 
 
 
 
 
 
 
 
d8f9231
935e622
 
d8f9231
935e622
 
 
 
d8f9231
 
935e622
 
 
 
d8f9231
935e622
 
 
d8f9231
935e622
 
 
d8f9231
935e622
 
d8f9231
935e622
d8f9231
935e622
 
 
 
 
d8f9231
935e622
 
d8f9231
935e622
d8f9231
 
 
94eb803
 
 
 
 
 
2b5e956
 
 
560d63b
4fa11ec
560d63b
 
4fa11ec
8c6fc00
 
 
 
 
 
 
 
 
47ba996
8c6fc00
 
 
 
 
86da6bf
22848f4
 
 
88c1ef1
5ca0c5b
 
 
 
044c4c8
 
 
5ca0c5b
4fa11ec
 
 
 
4e7b524
753a147
 
734e8a4
5dac5bc
 
 
 
8c6fc00
0269da3
1efccb8
41699e0
e2011a5
c43f5e7
41699e0
 
 
 
 
 
 
0269da3
41699e0
 
 
 
27a746c
0269da3
41699e0
 
 
 
 
 
 
 
7a2c457
41699e0
 
 
 
 
7a2c457
d245991
41699e0
e2011a5
c43f5e7
0269da3
5ff5029
 
 
8a63e65
 
68b0288
 
0269da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dac5bc
0269da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ca0c5b
9e43ce3
50f4ed7
e85b6ae
6bb0b0a
 
9e43ce3
 
5ca0c5b
 
88c1ef1
48bc263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d21d31
 
 
48bc263
 
4fa6c93
 
 
3af1fcf
4fa6c93
3af1fcf
4fa6c93
 
 
 
 
 
 
 
 
 
 
 
319a391
4fa6c93
 
3af1fcf
 
 
4fa6c93
9e43ce3
48bc263
9e43ce3
48bc263
 
 
 
0269da3
48bc263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e43ce3
48bc263
b806945
 
 
 
 
 
 
8d1d2de
b806945
 
 
 
22848f4
b806945
b74468d
 
 
b806945
 
 
 
b74468d
 
 
 
 
4fa6c93
 
48bc263
4fa6c93
ab1b7ae
4fa6c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74468d
8bdcc28
4fa6c93
 
 
 
 
 
8bdcc28
 
 
 
4fa6c93
 
 
 
 
 
 
 
 
 
 
 
 
8bdcc28
4fa6c93
 
9e43ce3
 
 
 
 
 
 
 
 
 
 
 
b806945
 
 
 
 
 
 
 
7a2c457
 
b806945
7a2c457
 
 
 
 
 
 
 
b806945
7a2c457
6573567
7a2c457
 
 
 
 
48bc263
4fa6c93
 
 
7a2c457
 
 
 
4fa6c93
 
 
 
 
 
80937a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47ba996
 
 
 
 
 
 
 
 
 
80937a3
47ba996
 
80937a3
47ba996
 
 
 
 
 
 
 
 
 
 
 
80937a3
47ba996
80937a3
47ba996
 
 
0269da3
47ba996
 
 
 
 
 
3af1fcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47ba996
3af1fcf
 
 
 
 
 
 
 
 
 
 
 
 
 
47ba996
4d21d31
 
 
56ff490
4d21d31
 
88c1ef1
 
80937a3
7311cdd
044c4c8
e9af887
 
c9c808c
 
 
 
 
 
 
 
4fa11ec
 
 
 
 
 
 
 
80937a3
c9c808c
 
4fa11ec
 
 
 
 
 
ed7561b
88c1ef1
5c67556
2b5e956
 
044c4c8
2b5e956
 
976cf1e
2b5e956
4fa11ec
 
 
f7efa0a
4fa11ec
 
7a2c457
 
 
f7efa0a
f5de82f
5c67556
7a2c457
f7efa0a
 
f5de82f
5c67556
560d63b
4fa11ec
560d63b
 
 
 
 
 
22848f4
7311cdd
5c67556
88c1ef1
22848f4
 
 
 
 
 
 
6770cdc
339b928
 
22848f4
 
6573567
88c1ef1
976cf1e
6573567
88c1ef1
 
22848f4
47ba996
88c1ef1
22848f4
2b98806
753a147
 
 
 
 
 
 
 
07db945
 
00dc973
 
753a147
07db945
 
4d21d31
 
5ca0c5b
88c1ef1
 
 
4fa6c93
3d40e53
5e7bae6
88c1ef1
 
 
0269da3
88c1ef1
 
22848f4
47ba996
88c1ef1
22848f4
88c1ef1
 
4fa11ec
 
2b5e956
88c1ef1
753a147
88c1ef1
 
560d63b
4fa11ec
22848f4
47ba996
22848f4
88c1ef1
4e7b524
38b8a09
 
88c1ef1
 
2ade645
753a147
 
 
3af1fcf
48bc263
fe0a89a
753a147
 
 
3af1fcf
753a147
3af1fcf
c95b250
3af1fcf
753a147
 
 
 
 
 
 
48bc263
753a147
 
 
38b8a09
753a147
734e8a4
753a147
 
 
 
 
 
 
 
 
 
 
16703cb
e85b6ae
 
a29b195
88c1ef1
507aec2
 
88c1ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
a29b195
88c1ef1
 
 
 
4fa6c93
88c1ef1
 
 
 
 
22848f4
47ba996
88c1ef1
22848f4
88c1ef1
 
22848f4
 
88c1ef1
 
 
 
 
4fa11ec
 
 
88c1ef1
 
 
 
560d63b
4fa11ec
22848f4
47ba996
22848f4
88c1ef1
 
9237b56
 
88c1ef1
5ca0c5b
 
 
eedb910
5ca0c5b
 
 
812ad0d
ee5bd57
4fa6c93
ee5bd57
 
812ad0d
 
56ff490
0269da3
812ad0d
 
56ff490
0269da3
812ad0d
 
56ff490
0269da3
5ca0c5b
 
 
 
 
 
6dceac4
5ca0c5b
369bb85
 
044c4c8
ee5bd57
5ca0c5b
 
22848f4
47ba996
5ca0c5b
22848f4
5ca0c5b
 
044c4c8
5ca0c5b
 
 
 
 
 
4fa11ec
 
5ca0c5b
4e7b524
5ca0c5b
80937a3
560d63b
4fa11ec
22848f4
47ba996
22848f4
5ca0c5b
044c4c8
 
5ca0c5b
9237b56
 
5ca0c5b
2ade645
 
 
 
ee5bd57
3af1fcf
ee5bd57
fe0a89a
2ade645
 
 
0269da3
3af1fcf
a75bd09
3af1fcf
c95b250
3af1fcf
2ade645
 
 
0269da3
3af1fcf
a75bd09
3af1fcf
c95b250
3af1fcf
2ade645
 
 
0269da3
3af1fcf
a75bd09
3af1fcf
c95b250
3af1fcf
ee5bd57
 
2ade645
 
 
 
 
 
369bb85
 
2ade645
ee5bd57
2ade645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ca0c5b
 
e85b6ae
5ca0c5b
 
9e43ce3
5ca0c5b
e85b6ae
5ca0c5b
 
22848f4
47ba996
5ca0c5b
22848f4
5ca0c5b
 
 
 
 
 
 
9e43ce3
5ca0c5b
 
4fa11ec
 
 
5ca0c5b
 
 
6bb0b0a
560d63b
4fa11ec
22848f4
47ba996
22848f4
5ca0c5b
 
9237b56
 
5ca0c5b
 
e85b6ae
7645f3c
7311cdd
7645f3c
 
7311cdd
 
 
4fa11ec
a39ec0a
4fa11ec
 
 
 
 
 
 
ed7561b
4fa11ec
 
 
ed7561b
4fa11ec
 
 
ed7561b
4fa11ec
 
 
 
4fa6c93
4fa11ec
 
 
 
22848f4
47ba996
4fa11ec
22848f4
4fa11ec
 
 
 
 
 
4e7b524
4fa11ec
 
 
 
22848f4
47ba996
22848f4
4fa11ec
 
 
 
62031d2
 
 
 
 
 
 
 
 
 
4fa6c93
62031d2
 
b74468d
62031d2
b74468d
 
 
62031d2
 
b74468d
 
62031d2
 
22848f4
47ba996
62031d2
22848f4
80937a3
62031d2
 
 
 
b74468d
 
62031d2
 
4fa6c93
5e7bae6
 
 
 
 
 
 
 
 
22848f4
5e7bae6
22848f4
5e7bae6
 
 
 
 
2ade645
5e7bae6
 
 
 
 
 
 
80937a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56ff490
0269da3
3af1fcf
80937a3
56ff490
0269da3
3af1fcf
80937a3
56ff490
0269da3
3af1fcf
80937a3
5e7bae6
 
3af1fcf
5e7bae6
 
 
 
80937a3
 
 
 
 
 
 
 
5e7bae6
 
 
 
 
22848f4
5e7bae6
 
22848f4
80937a3
 
 
5e7bae6
 
 
 
 
 
 
 
4fa6c93
80937a3
 
 
 
 
 
4fa11ec
 
62031d2
734e8a4
62031d2
80937a3
560d63b
4fa11ec
22848f4
47ba996
22848f4
80937a3
 
 
62031d2
80937a3
62031d2
 
5e7bae6
9e43ce3
7a2c457
 
d73ecb9
ed7561b
9e43ce3
0269da3
7a2c457
 
22848f4
47ba996
7a2c457
22848f4
7a2c457
 
 
4fa11ec
 
 
7a2c457
 
 
 
560d63b
4fa11ec
22848f4
47ba996
22848f4
7a2c457
 
 
 
 
e85b6ae
 
 
4fa6c93
e85b6ae
7a2c457
e85b6ae
ee5bd57
d73ecb9
7a2c457
d73ecb9
 
 
7a2c457
d73ecb9
 
 
 
 
ee5bd57
d73ecb9
 
e85b6ae
9e43ce3
d73ecb9
e85b6ae
d73ecb9
 
 
 
 
 
 
 
 
 
 
94eb803
b7c5735
0269da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7c5735
 
 
 
 
0269da3
3af1fcf
0269da3
 
 
b7c5735
3af1fcf
c95b250
3af1fcf
b7c5735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0269da3
 
 
b7c5735
0269da3
 
b7c5735
 
3af1fcf
b7c5735
 
 
ee5bd57
0269da3
 
b7c5735
 
 
 
 
 
 
 
 
 
ee5bd57
b7c5735
0269da3
 
b7c5735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0269da3
5dac5bc
15d48ba
0269da3
5dac5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0269da3
5dac5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d21d31
ae9accd
4d21d31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dac5bc
4d21d31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03a488b
 
6c4afb4
4d21d31
 
 
 
 
 
 
6c4afb4
 
 
 
 
 
 
 
03a488b
 
4d21d31
 
896eab2
 
 
4d21d31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896eab2
 
 
4d21d31
 
 
 
 
 
 
 
 
 
 
 
 
 
03a488b
 
 
4d21d31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03a488b
4d21d31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f0917
 
 
 
 
4d21d31
d0f0917
4d21d31
 
 
03a488b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d21d31
 
 
03a488b
4d21d31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03a488b
 
 
 
4d21d31
03a488b
4d21d31
 
 
 
 
 
 
 
03a488b
 
 
 
 
 
 
4d21d31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03a488b
 
4d21d31
 
62031d2
83bc547
753a147
84b700a
753a147
 
 
 
 
 
 
 
 
 
 
 
 
84b700a
8f2d7ad
753a147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
935e622
753a147
 
 
 
 
 
 
 
 
 
 
 
2ade645
 
 
b7c5735
15d48ba
753a147
84b700a
 
 
 
 
bee43e5
84b700a
d73ecb9
04cb121
 
 
d8f9231
50f4ed7
645651e
b583aba
e2b7cb4
 
 
 
 
 
7311cdd
50f4ed7
e2b7cb4
 
 
 
 
 
2b5e956
 
4e7b524
 
 
 
 
 
 
c9c808c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
# Author: Huzheng Yang
# %%
import copy
from datetime import datetime
import pickle
from functools import partial
from io import BytesIO
import json
import os
import uuid
import zipfile
import multiprocessing as mp

from einops import rearrange
from matplotlib import pyplot as plt
import matplotlib
USE_HUGGINGFACE_ZEROGPU = os.getenv("USE_HUGGINGFACE_ZEROGPU", "False").lower() in ["true", "1", "yes"]
DOWNLOAD_ALL_MODELS_DATASETS = os.getenv("DOWNLOAD_ALL_MODELS_DATASETS", "False").lower() in ["true", "1", "yes"]

if USE_HUGGINGFACE_ZEROGPU:  # huggingface ZeroGPU, dynamic GPU allocation 
    try:
        import spaces
    except:
        USE_HUGGINGFACE_ZEROGPU = False
        
if USE_HUGGINGFACE_ZEROGPU:
    BATCH_SIZE = 1
else:  # run on local machine
    BATCH_SIZE = 1

import gradio as gr

import torch
import torch.nn.functional as F
from PIL import Image
import numpy as np
import time
import threading

from ncut_pytorch.backbone import extract_features, load_model
from ncut_pytorch.backbone import MODEL_DICT, LAYER_DICT, RES_DICT
from ncut_pytorch import NCUT
from ncut_pytorch import eigenvector_to_rgb


DATASETS = {
    'Common': [
        ('mrm8488/ImageNet1K-val', 1000),
        ('UCSC-VLAA/Recap-COCO-30K', None),
        ('nateraw/pascal-voc-2012', None),
        ('johnowhitaker/imagenette2-320', 10),
        ('Multimodal-Fatima/CUB_train', 200),
        ('saragag/FlBirds', 7),
        ('microsoft/cats_vs_dogs', None),
        ('Robotkid2696/food_classification', 20),
        ('JapanDegitalMaterial/Places_in_Japan', None),
    ],
    'Ego': [
        ('EgoThink/EgoThink', None),   
    ],
    'Face': [
        ('nielsr/CelebA-faces', None),
        ('huggan/anime-faces', None),
    ],
    'Pose': [
        ('sayakpaul/poses-controlnet-dataset', None),
        ('razdab/sign_pose_M', None),
        ('Marqo/deepfashion-multimodal', None),
        ('Fiacre/small-animal-poses-controlnet-dataset', None),
        ('junjuice0/vtuber-tachi-e', None),
    ],
    'Hand': [
        ('trashsock/hands-images', 8),
        ('dduka/guitar-chords-v3', None),
    ],
    'Satellite': [
        ('arakesh/deepglobe-2448x2448', None),
        ('tanganke/eurosat', 10),
        ('wangyi111/EuroSAT-SAR', None),
        ('efoley/sar_tile_512', None),
    ],
    'Medical': [
        ('Mahadih534/Chest_CT-Scan_images-Dataset', None),
        ('TrainingDataPro/chest-x-rays', None),
        ('hongrui/mimic_chest_xray_v_1', None),
        ('sartajbhuvaji/Brain-Tumor-Classification', 4),
        ('Falah/Alzheimer_MRI', 4),
        ('Leonardo6/path-vqa', None),
        ('Itsunori/path-vqa_jap', None),
        ('ruby-jrl/isic-2024-2', None),
        ('VRJBro/lung_cancer_dataset', 5),
        ('keremberke/blood-cell-object-detection', None)
    ],
    'Miscs': [
        ('yashvoladoddi37/kanjienglish', None),
        ('Borismile/Anime-dataset', None),
        ('jainr3/diffusiondb-pixelart', None),
        ('jlbaker361/dcgan-eval-creative_gan_256_256', None),
        ('Francesco/csgo-videogame', None),
        ('Francesco/apex-videogame', None),
        ('huggan/pokemon', None),
        ('huggan/few-shot-universe', None),
        ('huggan/flowers-102-categories', None),
        ('huggan/inat_butterflies_top10k', None),
    ]
}
CENTER_CROP_DATASETS = ["razdab/sign_pose_M"]


from datasets import load_dataset

def download_all_datasets():
    for cat in DATASETS.keys():
        for tup in DATASETS[cat]:
            name = tup[0]
            print(f"Downloading {name}")
            try:
                load_dataset(name, trust_remote_code=True)
            except Exception as e:
                print(f"Error downloading {name}: {e}")

def compute_ncut(
    features,
    num_eig=100,
    num_sample_ncut=10000,
    affinity_focal_gamma=0.3,
    knn_ncut=10,
    knn_tsne=10,
    embedding_method="UMAP",
    embedding_metric='euclidean',
    num_sample_tsne=300,
    perplexity=150,
    n_neighbors=150,
    min_dist=0.1,
    sampling_method="QuickFPS",
    metric="cosine",
    indirect_connection=True,
    make_orthogonal=False,
    progess_start=0.4,
):        
    progress = gr.Progress()
    logging_str = ""
    
    num_nodes = np.prod(features.shape[:-1])
    if num_nodes / 2 < num_eig:
        # raise gr.Error("Number of eigenvectors should be less than half the number of nodes.")
        gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.")
        num_eig = num_nodes // 2 - 1
        logging_str += f"Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.\n"
    
    start = time.time()
    progress(progess_start+0.0, desc="NCut")
    eigvecs, eigvals = NCUT(
        num_eig=num_eig,
        num_sample=num_sample_ncut,
        device="cuda" if torch.cuda.is_available() else "cpu",
        affinity_focal_gamma=affinity_focal_gamma,
        knn=knn_ncut,
        sample_method=sampling_method,
        distance=metric,
        normalize_features=False,
        indirect_connection=indirect_connection,
        make_orthogonal=make_orthogonal,
    ).fit_transform(features.reshape(-1, features.shape[-1]))
    # print(f"NCUT time: {time.time() - start:.2f}s")
    logging_str += f"NCUT time: {time.time() - start:.2f}s\n"
    
    start = time.time()
    progress(progess_start+0.01, desc="spectral-tSNE")
    _, rgb = eigenvector_to_rgb(
        eigvecs,
        method=embedding_method,
        metric=embedding_metric,
        num_sample=num_sample_tsne,
        perplexity=perplexity,
        n_neighbors=n_neighbors,
        min_distance=min_dist,
        knn=knn_tsne,
        device="cuda" if torch.cuda.is_available() else "cpu",
    )
    logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n"

    rgb = rgb.reshape(features.shape[:-1] + (3,))
    return rgb, logging_str, eigvecs


def compute_ncut_directed(
    features_1,
    features_2,
    num_eig=100,
    num_sample_ncut=10000,
    affinity_focal_gamma=0.3,
    knn_ncut=10,
    knn_tsne=10,
    embedding_method="UMAP",
    embedding_metric='euclidean',
    num_sample_tsne=300,
    perplexity=150,
    n_neighbors=150,
    min_dist=0.1,
    sampling_method="QuickFPS",
    metric="cosine",
    indirect_connection=False,
    make_orthogonal=False,
    make_symmetric=False,
    progess_start=0.4,
):        
    # print("Using directed_ncut")
    # print("features_1.shape", features_1.shape)
    # print("features_2.shape", features_2.shape)
    from directed_ncut import nystrom_ncut
    progress = gr.Progress()
    logging_str = ""
    
    num_nodes = np.prod(features_1.shape[:-2])
    if num_nodes / 2 < num_eig:
        # raise gr.Error("Number of eigenvectors should be less than half the number of nodes.")
        gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.")
        num_eig = num_nodes // 2 - 1
        logging_str += f"Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.\n"
    
    start = time.time()
    progress(progess_start+0.0, desc="NCut")
    n_features = features_1.shape[-2]
    _features_1 = rearrange(features_1, "b h w d c -> (b h w) (d c)")
    _features_2 = rearrange(features_2, "b h w d c -> (b h w) (d c)")
    eigvecs, eigvals, _ = nystrom_ncut(
        _features_1,
        features_B=_features_2,
        num_eig=num_eig,
        num_sample=num_sample_ncut,
        device="cuda" if torch.cuda.is_available() else "cpu",
        affinity_focal_gamma=affinity_focal_gamma,
        knn=knn_ncut,
        sample_method=sampling_method,
        distance=metric,
        normalize_features=False,
        indirect_connection=indirect_connection,
        make_orthogonal=make_orthogonal,
        make_symmetric=make_symmetric,
        n_features=n_features,
    )
    # print(f"NCUT time: {time.time() - start:.2f}s")
    logging_str += f"NCUT time: {time.time() - start:.2f}s\n"
    
    start = time.time()
    progress(progess_start+0.01, desc="spectral-tSNE")
    _, rgb = eigenvector_to_rgb(
        eigvecs,
        method=embedding_method,
        metric=embedding_metric,
        num_sample=num_sample_tsne,
        perplexity=perplexity,
        n_neighbors=n_neighbors,
        min_distance=min_dist,
        knn=knn_tsne,
        device="cuda" if torch.cuda.is_available() else "cpu",
    )
    logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n"

    rgb = rgb.reshape(features_1.shape[:3] + (3,))
    return rgb, logging_str, eigvecs


def dont_use_too_much_green(image_rgb):
    # make sure the foval 40% of the image is red leading
    x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7)
    y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7)
    sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2))
    sorted_indices = sum_values.argsort(descending=True)
    image_rgb = image_rgb[:, :, :, sorted_indices]
    return image_rgb


def to_pil_images(images, target_size=512, resize=True):
    size = images[0].shape[1]
    multiplier = target_size // size
    res = int(size * multiplier)
    pil_images = [
            Image.fromarray((image * 255).cpu().numpy().astype(np.uint8))
            for image in images
        ]
    if resize:
        pil_images = [
            image.resize((res, res), Image.Resampling.NEAREST)
            for image in pil_images
        ]
    return pil_images
    


def pil_images_to_video(images, output_path, fps=5):
    # from pil images to numpy
    images = [np.array(image) for image in images]
    
    # print("Saving video to", output_path)
    import cv2
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    height, width, _ = images[0].shape
    out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
    for image in images:
        out.write(cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
    out.release()
    return output_path

# save up to 100 videos in disk
class VideoCache:
    def __init__(self, max_videos=100):
        self.max_videos = max_videos
        self.videos = {}
    
    def add_video(self, video_path):
        if len(self.videos) >= self.max_videos:
            pop_path = self.videos.popitem()[0]
            try:
                os.remove(pop_path)
            except:
                pass
        self.videos[video_path] = video_path
    
    def get_video(self, video_path):
        return self.videos.get(video_path, None)

video_cache = VideoCache()
    
def get_random_path(length=10):
    import random
    import string
    name = ''.join(random.choices(string.ascii_lowercase + string.digits, k=length))
    path = f'/tmp/{name}.mp4'
    return path

default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/guitar_ego.jpg', './images/image_5.jpg']
default_outputs = ['./images/image-1.webp', './images/image-2.webp', './images/image-3.webp', './images/image-4.webp', './images/image-5.webp']
# default_outputs_independent = ['./images/image-6.webp', './images/image-7.webp', './images/image-8.webp', './images/image-9.webp', './images/image-10.webp']
default_outputs_independent = []

downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg']
downscaled_outputs = default_outputs

example_items = downscaled_images[:3] + downscaled_outputs[:3]


def run_alignedthreemodelattnnodes(images, model, batch_size=16):
    
    use_cuda = torch.cuda.is_available() 
    device = torch.device("cuda" if use_cuda else "cpu")
    
    if use_cuda:
        model = model.to(device)
        
    chunked_idxs = torch.split(torch.arange(images.shape[0]), batch_size)
    
    outputs = []
    for idxs in chunked_idxs:
        inp = images[idxs]
        if use_cuda:
            inp = inp.to(device)
        out = model(inp)  
        # normalize before save
        out = F.normalize(out, dim=-1)
        outputs.append(out.cpu().float())
    outputs = torch.cat(outputs, dim=0)

    return outputs


def _reds_colormap(image):
    # normed_data = image / image.max()  # Normalize to [0, 1]
    normed_data = image
    colormap = matplotlib.colormaps['inferno']  # Get the Reds colormap
    colored_image = colormap(normed_data)  # Apply colormap
    return (colored_image[..., :3] * 255).astype(np.uint8)  # Convert to RGB

# heatmap images
def apply_reds_colormap(images, size):
    # for i_image in range(images.shape[0]):
    #     images[i_image] -= images[i_image].min()
    #     images[i_image] /= images[i_image].max()
    # normed_data = [_reds_colormap(images[i]) for i in range(images.shape[0])]
    # normed_data = np.stack(normed_data)
    normed_data = _reds_colormap(images)
    normed_data = torch.tensor(normed_data).float()
    normed_data = rearrange(normed_data, "b h w c -> b c h w")
    normed_data = torch.nn.functional.interpolate(normed_data, size=size, mode="nearest")
    normed_data = rearrange(normed_data, "b c h w -> b h w c")
    normed_data = normed_data.cpu().numpy().astype(np.uint8)
    return normed_data

# Blend heatmap with the original image
def blend_image_with_heatmap(image, heatmap, opacity1=0.5, opacity2=0.5):
    blended = (1 - opacity1) * image + opacity2 * heatmap
    return blended.astype(np.uint8)


def segment_fg_bg(images):

    images = F.interpolate(images, (224, 224), mode="bilinear")

    # model = load_alignedthreemodel()
    model = load_model("CLIP(ViT-B-16/openai)")
    from ncut_pytorch.backbone import resample_position_embeddings
    pos_embed = model.model.visual.positional_embedding
    pos_embed = resample_position_embeddings(pos_embed, 14, 14)
    model.model.visual.positional_embedding = torch.nn.Parameter(pos_embed)
    
    batch_size = 4
    chunk_idxs = torch.split(torch.arange(images.shape[0]), batch_size)

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model.to(device)
    means = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
    stds = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
    
    fg_acts, bg_acts = [], []
    for chunk_idx in chunk_idxs:
        with torch.no_grad():
            input_images = images[chunk_idx].to(device)
            # transform the input images
            input_images = (input_images - means) / stds
            # output = model(input_images)[:, 5]
            output = model(input_images)['attn'][6]  # [B, H=14, W=14, C]
            fg_act = output[:, 6, 6].mean(0)
            bg_act = output[:, 0, 0].mean(0)
            fg_acts.append(fg_act)
            bg_acts.append(bg_act)
    fg_act = torch.stack(fg_acts, dim=0).mean(0)
    bg_act = torch.stack(bg_acts, dim=0).mean(0)
    fg_act = F.normalize(fg_act, dim=-1)
    bg_act = F.normalize(bg_act, dim=-1)
    
    # ref_image = default_images[0]
    # image = Image.open(ref_image).convert("RGB").resize((224, 224), Image.Resampling.BILINEAR)
    # image = torch.tensor(np.array(image)).permute(2, 0, 1).float().to(device)
    # image = (image / 255.0 - means) / stds
    # output = model(image)['attn'][6][0]
    # # print(output.shape)
    # # bg on the center
    # fg_act = output[5, 5]
    # # bg on the bottom left
    # bg_act = output[0, 0]
    # fg_act = F.normalize(fg_act, dim=-1)
    # bg_act = F.normalize(bg_act, dim=-1)
    
    # print(images.mean(), images.std())
    
    fg_act, bg_act = fg_act.to(device), bg_act.to(device)
    chunk_idxs = torch.split(torch.arange(images.shape[0]), batch_size)
    heatmap_fgs, heatmap_bgs = [], []
    for chunk_idx in chunk_idxs:
        with torch.no_grad():
            input_images = images[chunk_idx].to(device)
            # transform the input images
            input_images = (input_images - means) / stds
            # output = model(input_images)[:, 5]
            output = model(input_images)['attn'][6]
            output = F.normalize(output, dim=-1)
            heatmap_fg = output @ fg_act[:, None]  # [B, H, W, 1]
            heatmap_bg = output @ bg_act[:, None]  # [B, H, W, 1]
            heatmap_fgs.append(heatmap_fg.cpu())
            heatmap_bgs.append(heatmap_bg.cpu())
    heatmap_fg = torch.cat(heatmap_fgs, dim=0)
    heatmap_bg = torch.cat(heatmap_bgs, dim=0)
    return heatmap_fg, heatmap_bg


def make_cluster_plot(eigvecs, images, h=64, w=64, progess_start=0.6, advanced=False, clusters=50, eig_idx=None, title='cluster'):
    if clusters == 0:
        return [], []
    progress = gr.Progress()
    progress(progess_start, desc="Finding Clusters by FPS")
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    eigvecs = eigvecs.to(device)
    from ncut_pytorch.ncut_pytorch import farthest_point_sampling
    magnitude = torch.norm(eigvecs, dim=-1)
    
    # gr.Info("Finding Clusters by FPS, no magnitude filtering")
    top_p_idx = torch.arange(eigvecs.shape[0])
    if eig_idx is not None:
        top_p_idx = eig_idx
    # gr.Info("Finding Clusters by FPS, with magnitude filtering")
    # p = 0.8
    # top_p_idx = magnitude.argsort(descending=True)[:int(p * magnitude.shape[0])]
    
    
    ret_magnitude = magnitude.reshape(-1, h, w)
    
    
    num_samples = 300
    if num_samples > top_p_idx.shape[0]:
        num_samples = top_p_idx.shape[0]
    fps_idx = farthest_point_sampling(eigvecs[top_p_idx], num_samples)
    fps_idx = top_p_idx[fps_idx]
    
    # fps round 2 on the heatmap
    left = eigvecs[fps_idx, :].clone()
    right = eigvecs.clone()
    left = F.normalize(left, dim=-1)
    right = F.normalize(right, dim=-1)
    heatmap = left @ right.T
    heatmap = F.normalize(heatmap, dim=-1)  # [300, N_pixel]  PCA-> [300, 8]
    num_samples = clusters + 20   # 100/120
    if num_samples > fps_idx.shape[0]:
        num_samples = fps_idx.shape[0]
    r2_fps_idx = farthest_point_sampling(heatmap, num_samples)
    fps_idx = fps_idx[r2_fps_idx]
    
    # downsample to 256x256
    images = F.interpolate(images, (256, 256), mode="bilinear")
    images = images.cpu().numpy()
    images = images.transpose(0, 2, 3, 1)
    images = images * 255
    images = images.astype(np.uint8)
    
    
    # sort the fps_idx by the mean of the heatmap
    fps_heatmaps = {}
    sort_values = []
    top3_image_idx = {}
    top10_image_idx = {}
    for _, idx in enumerate(fps_idx):
        heatmap = F.cosine_similarity(eigvecs, eigvecs[idx][None], dim=-1)
        
        # def top_percentile(tensor, p=0.8, max_size=10000):
        #     tensor = tensor.clone().flatten()
        #     if tensor.shape[0] > max_size:
        #         tensor = tensor[torch.randperm(tensor.shape[0])[:max_size]]
        #     return tensor.quantile(p)
        # top_p = top_percentile(heatmap, p=0.5)
        top_p = 0.9
        
        heatmap = heatmap.reshape(-1, h, w)
        mask = (heatmap > top_p).float()
        # take top 3 masks only
        mask_sort_values = mask.mean((1, 2))
        _sort_value2 = (heatmap > 0.1).float().mean((1, 2)) * 0.1
        mask_sort_values += _sort_value2
        mask_sort_idx = torch.argsort(mask_sort_values, descending=True)
        mask = mask[mask_sort_idx[:3]] 
        sort_values.append(mask.mean().item())
        # fps_heatmaps[idx.item()] = heatmap.cpu()
        fps_heatmaps[idx.item()] = heatmap[mask_sort_idx[:6]].cpu()
        top3_image_idx[idx.item()] = mask_sort_idx[:3]
        top10_image_idx[idx.item()] = mask_sort_idx[:6]
    # do the sorting
    _sort_idx = torch.tensor(sort_values).argsort(descending=True)
    fps_idx = fps_idx[_sort_idx]
    # reverse the fps_idx
    # fps_idx = fps_idx.flip(0)
    # discard the big clusters
    
    # gr.Info("Discarding the biggest 10 clusters")
    # fps_idx = fps_idx[10:]
    # gr.Info("Not discarding the biggest 10 clusters")
    # gr.Info("Discarding the smallest 30 out of 80 sampled clusters")
    
    if not advanced:
        # shuffle the fps_idx
        fps_idx = fps_idx[torch.randperm(fps_idx.shape[0])]
    
        
    def plot_cluster_images(fps_idx_chunk, chunk_idx):
        fig, axs = plt.subplots(3, 5, figsize=(15, 9)) if not advanced else plt.subplots(6, 5, figsize=(15, 18))
        for ax in axs.flatten():
            ax.axis("off")
        for j, idx in enumerate(fps_idx_chunk):
            heatmap = fps_heatmaps[idx.item()]
            size = (images.shape[1], images.shape[2])
            heatmap = apply_reds_colormap(heatmap, size)
            image_idxs = top3_image_idx[idx.item()] if not advanced else top10_image_idx[idx.item()]
            for i, image_idx in enumerate(image_idxs):
                _heatmap = blend_image_with_heatmap(images[image_idx], heatmap[i])
                axs[i, j].imshow(_heatmap)
                if i == 0:
                    axs[i, j].set_title(f"{title} {chunk_idx * 5 + j + 1}", fontsize=24)
        plt.tight_layout(h_pad=0.5, w_pad=0.3)
        filename = f"{datetime.now():%Y%m%d%H%M%S%f}_{uuid.uuid4().hex}"
        tmp_path = f"/tmp/{filename}.png"
        plt.savefig(tmp_path, bbox_inches='tight', dpi=72)
        img = Image.open(tmp_path).convert("RGB")
        os.remove(tmp_path)
        plt.close()
        return img

    fig_images = []
    num_plots = clusters // 5
    plot_step_float = (1.0 - progess_start) / num_plots
    fps_idx_chunks = [fps_idx[i*5:(i+1)*5] for i in range(num_plots)]

    # with mp.Pool(processes=mp.cpu_count()) as pool:
    #     results = [pool.apply_async(plot_cluster_images, args=(chunk, i)) for i, chunk in enumerate(fps_idx_chunks)]
    #     for i, result in enumerate(results):
    #         progress(progess_start + i * plot_step_float, desc=f"Plotted {title}")
    #         fig_images.append(result.get())
    for i, chunk in enumerate(fps_idx_chunks):
        progress(progess_start + i * plot_step_float, desc=f"Plotted {title}")
        fig_images.append(plot_cluster_images(chunk, i))

    return fig_images, ret_magnitude

def make_cluster_plot_advanced(eigvecs, images, h=64, w=64):
    heatmap_fg, heatmap_bg = segment_fg_bg(images.clone())
    heatmap_bg = rearrange(heatmap_bg, 'b h w c -> b c h w')
    heatmap_fg = rearrange(heatmap_fg, 'b h w c -> b c h w')
    heatmap_fg = F.interpolate(heatmap_fg, (h, w), mode="bilinear")
    heatmap_bg = F.interpolate(heatmap_bg, (h, w), mode="bilinear")
    heatmap_fg = heatmap_fg.flatten()
    heatmap_bg = heatmap_bg.flatten()
    
    fg_minus_bg = heatmap_fg - heatmap_bg
    fg_mask = fg_minus_bg > fg_minus_bg.quantile(0.8)
    bg_mask = fg_minus_bg < fg_minus_bg.quantile(0.2)

    # fg_mask = heatmap_fg > heatmap_fg.quantile(0.8)
    # bg_mask = heatmap_bg > heatmap_bg.quantile(0.8)
    other_mask = ~(fg_mask | bg_mask)
    
    fg_idx = torch.arange(heatmap_fg.shape[0])[fg_mask]
    bg_idx = torch.arange(heatmap_bg.shape[0])[bg_mask]
    other_idx = torch.arange(heatmap_fg.shape[0])[other_mask]
    
    fg_images, _ = make_cluster_plot(eigvecs, images, h=h, w=w, advanced=True, clusters=100, eig_idx=fg_idx, title="fg")
    bg_images, _ = make_cluster_plot(eigvecs, images, h=h, w=w, advanced=True, clusters=20, eig_idx=bg_idx, title="bg")
    other_images, _ = make_cluster_plot(eigvecs, images, h=h, w=w, advanced=True, clusters=0, eig_idx=other_idx, title="other")
    
    cluster_images = fg_images + bg_images + other_images
    
    magitude = torch.norm(eigvecs, dim=-1)
    magitude = magitude.reshape(-1, h, w)
    
    # magitude = fg_minus_bg.reshape(-1, h, w)  #TODO
    
    return cluster_images, magitude
    
def ncut_run(
    model,
    images,
    model_name="DiNO(dino_vitb8_448)",
    layer=10,
    num_eig=100,
    node_type="block",
    affinity_focal_gamma=0.5,
    num_sample_ncut=10000,
    knn_ncut=10,
    embedding_method="tsne_3d",
    embedding_metric='euclidean',
    num_sample_tsne=1000,
    knn_tsne=10,
    perplexity=500,
    n_neighbors=500,
    min_dist=0.1,
    sampling_method="QuickFPS",
    ncut_metric="cosine",
    indirect_connection=True,
    make_orthogonal=False,
    old_school_ncut=False,
    recursion=False,
    recursion_l2_n_eigs=50,
    recursion_l3_n_eigs=20,
    recursion_metric="euclidean",
    recursion_l1_gamma=0.5,
    recursion_l2_gamma=0.5,
    recursion_l3_gamma=0.5,
    video_output=False,
    is_lisa=False,
    lisa_prompt1="",
    lisa_prompt2="",
    lisa_prompt3="",
    plot_clusters=False,
    alignedcut_eig_norm_plot=False,
    **kwargs,
):
    advanced = kwargs.get("advanced", False)
    directed = kwargs.get("directed", False)
    
    progress = gr.Progress()
    progress(0.2, desc="Feature Extraction")
    
    logging_str = ""
    if "AlignedThreeModelAttnNodes" == model_name:
        # dirty patch for the alignedcut paper
        resolution = (224, 224)
    else:
        resolution = RES_DICT[model_name]
    logging_str += f"Resolution: {resolution}\n"
    if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
        # raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
        gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.")
        logging_str += f"Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.\n"
        perplexity = num_sample_tsne - 1
        n_neighbors = num_sample_tsne - 1

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        
    node_type = node_type.split(":")[0].strip()
        
    start = time.time()
    if "AlignedThreeModelAttnNodes" == model_name:
        # dirty patch for the alignedcut paper
        features = run_alignedthreemodelattnnodes(images, model, batch_size=BATCH_SIZE)
    elif is_lisa == True:
        # dirty patch for the LISA model
        features = []
        with torch.no_grad():
            model = model.cuda()
            images = images.cuda()
            lisa_prompts = [lisa_prompt1, lisa_prompt2, lisa_prompt3]
            for prompt in lisa_prompts:
                import bleach
                prompt = bleach.clean(prompt)
                prompt = prompt.strip()
                # print(prompt)
                # # copy the sting to a new string
                # copy_s = copy.copy(prompt)
                feature = model(images, input_str=prompt)[node_type][0]
                feature = F.normalize(feature, dim=-1)
                features.append(feature.cpu().float())
            features = torch.stack(features)
    else:
        features = extract_features(
            images, model, node_type=node_type, layer=layer-1, batch_size=BATCH_SIZE
        )
        if directed:
            node_type2 = kwargs.get("node_type2", None)
            features_B = extract_features(
                images, model, node_type=node_type2, layer=layer-1, batch_size=BATCH_SIZE
            )
    # print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
    logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
    del model
    
    progress(0.4, desc="NCut")
    
    if recursion:
        rgbs = []
        all_eigvecs = []
        recursion_gammas = [recursion_l1_gamma, recursion_l2_gamma, recursion_l3_gamma]
        inp = features
        progress_start = 0.4
        for i, n_eigs in enumerate([num_eig, recursion_l2_n_eigs, recursion_l3_n_eigs]):
            logging_str += f"Recursion #{i+1}\n"
            progress_start += + 0.1 * i
            rgb, _logging_str, eigvecs = compute_ncut(
                inp,
                num_eig=n_eigs,
                num_sample_ncut=num_sample_ncut,
                affinity_focal_gamma=recursion_gammas[i],
                knn_ncut=knn_ncut,
                knn_tsne=knn_tsne,
                num_sample_tsne=num_sample_tsne,
                embedding_method=embedding_method,
                embedding_metric=embedding_metric,
                perplexity=perplexity,
                n_neighbors=n_neighbors,
                min_dist=min_dist,
                sampling_method=sampling_method,
                metric=ncut_metric if i == 0 else recursion_metric,
                indirect_connection=indirect_connection,
                make_orthogonal=make_orthogonal,
                progess_start=progress_start,
            )
            logging_str += _logging_str
            all_eigvecs.append(eigvecs.cpu().clone())
            
            
            if "AlignedThreeModelAttnNodes" == model_name:
                # dirty patch for the alignedcut paper
                start = time.time()
                progress(progress_start + 0.09, desc=f"Plotting Recursion {i+1}")
                pil_images = []
                for i_image in range(rgb.shape[0]):
                    _im = plot_one_image_36_grid(images[i_image], rgb[i_image])
                    pil_images.append(_im)
                rgbs.append(pil_images)
                logging_str += f"plot time: {time.time() - start:.2f}s\n"
            else:
                rgb = dont_use_too_much_green(rgb)
                rgbs.append(to_pil_images(rgb))
                
            inp = eigvecs.reshape(*features.shape[:-1], -1)
            if recursion_metric == "cosine":
                inp = F.normalize(inp, dim=-1)
                
        if not advanced:
            return rgbs[0], rgbs[1], rgbs[2], logging_str
        if "AlignedThreeModelAttnNodes" == model_name:
            return rgbs[0], rgbs[1], rgbs[2], logging_str
        
        if advanced:
            cluster_plots, norm_plots = [], []
            for i in range(3):
                eigvecs = all_eigvecs[i]
                # add norm plot, cluster plot
                start = time.time()
                progress_start = 0.6
                progress(progress_start, desc=f"Plotting Clusters Recursion #{i+1}")
                h, w = features.shape[1], features.shape[2]
                if torch.cuda.is_available():
                    images = images.cuda()
                _images = reverse_transform_image(images, stablediffusion="stable" in model_name.lower())
                cluster_images, eig_magnitude = make_cluster_plot_advanced(eigvecs, _images, h=h, w=w)
                logging_str += f"Recursion #{i+1} plot time: {time.time() - start:.2f}s\n"    
                
                norm_images = []
                vmin, vmax = eig_magnitude.min(), eig_magnitude.max()
                eig_magnitude = (eig_magnitude - vmin) / (vmax - vmin)
                eig_magnitude = eig_magnitude.cpu().numpy()
                colormap = matplotlib.colormaps['Reds']
                for i_image in range(eig_magnitude.shape[0]):
                    norm_image = colormap(eig_magnitude[i_image])
                    norm_images.append(torch.tensor(norm_image[..., :3]))
                norm_images = to_pil_images(norm_images)
                logging_str += f"Recursion #{i+1} Eigenvector Magnitude: [{vmin:.2f}, {vmax:.2f}]\n"
                gr.Info(f"Recursion #{i+1} Eigenvector Magnitude:</br> Min: {vmin:.2f}, Max: {vmax:.2f}", duration=10)
                
                cluster_plots.append(cluster_images)
                norm_plots.append(norm_images)
            
            return *rgbs, *norm_plots, *cluster_plots, logging_str
            
            
    if old_school_ncut:  # individual images
        logging_str += "Running NCut for each image independently\n"
        rgb = []
        progress_start = 0.4
        step_float = 0.6 / features.shape[0]
        for i_image in range(features.shape[0]):
            logging_str += f"Image #{i_image+1}\n"
            feature = features[i_image]
            _rgb, _logging_str, _ = compute_ncut(
                feature[None],
                num_eig=num_eig,
                num_sample_ncut=30000,
                affinity_focal_gamma=affinity_focal_gamma,
                knn_ncut=1,
                knn_tsne=10,
                num_sample_tsne=300,
                embedding_method=embedding_method,
                embedding_metric=embedding_metric,
                perplexity=perplexity,
                n_neighbors=n_neighbors,
                min_dist=min_dist,
                sampling_method=sampling_method,
                metric=ncut_metric,
                indirect_connection=indirect_connection,
                make_orthogonal=make_orthogonal,
                progess_start=progress_start+step_float*i_image,
            )
            logging_str += _logging_str
            rgb.append(_rgb[0])
        return to_pil_images(rgb), logging_str
    
    
    
    # ailgnedcut
    if not directed:
        rgb, _logging_str, eigvecs = compute_ncut(
            features,
            num_eig=num_eig,
            num_sample_ncut=num_sample_ncut,
            affinity_focal_gamma=affinity_focal_gamma,
            knn_ncut=knn_ncut,
            knn_tsne=knn_tsne,
            num_sample_tsne=num_sample_tsne,
            embedding_method=embedding_method,
            embedding_metric=embedding_metric,
            perplexity=perplexity,
            n_neighbors=n_neighbors,
            min_dist=min_dist,
            sampling_method=sampling_method,
            indirect_connection=indirect_connection,
            make_orthogonal=make_orthogonal,
            metric=ncut_metric,
        )
    if directed:
        head_index_text = kwargs.get("head_index_text", None)
        n_heads = features.shape[-2]   # (batch, h, w, n_heads, d)
        if head_index_text == 'all':
            head_idx = torch.arange(n_heads)
        else:
            _idxs = head_index_text.split(",")
            head_idx = torch.tensor([int(idx) for idx in _idxs])
        features_A = features[:, :, :, head_idx, :]
        features_B = features_B[:, :, :, head_idx, :]
        
        rgb, _logging_str, eigvecs = compute_ncut_directed(
            features_A,
            features_B,
            num_eig=num_eig,
            num_sample_ncut=num_sample_ncut,
            affinity_focal_gamma=affinity_focal_gamma,
            knn_ncut=knn_ncut,
            knn_tsne=knn_tsne,
            num_sample_tsne=num_sample_tsne,
            embedding_method=embedding_method,
            embedding_metric=embedding_metric,
            perplexity=perplexity,
            n_neighbors=n_neighbors,
            min_dist=min_dist,
            sampling_method=sampling_method,
            indirect_connection=False,
            make_orthogonal=make_orthogonal,
            metric=ncut_metric,
            make_symmetric=kwargs.get("make_symmetric", None),
        )
        
        
        
    logging_str += _logging_str
    
    if "AlignedThreeModelAttnNodes" == model_name:
        # dirty patch for the alignedcut paper
        start = time.time()
        progress(0.6, desc="Plotting")
        pil_images = []
        for i_image in range(rgb.shape[0]):
            _im = plot_one_image_36_grid(images[i_image], rgb[i_image])
            pil_images.append(_im)
        logging_str += f"plot time: {time.time() - start:.2f}s\n"
        return pil_images, logging_str
    
    
    if is_lisa == True:
        # dirty patch for the LISA model
        galleries = []
        for i_prompt in range(len(lisa_prompts)):
            _rgb = rgb[i_prompt]
            galleries.append(to_pil_images(_rgb))
        return *galleries, logging_str
    
    rgb = dont_use_too_much_green(rgb)
    
    if video_output:
        progress(0.8, desc="Saving Video")
        video_path = get_random_path()
        video_cache.add_video(video_path)
        pil_images_to_video(to_pil_images(rgb), video_path, fps=5)
        return video_path, logging_str
        
    cluster_images = None
    if plot_clusters and kwargs.get("n_ret", 1) > 1:
        start = time.time()
        progress_start = 0.6
        progress(progress_start, desc="Plotting Clusters")
        h, w = features.shape[1], features.shape[2]
        if torch.cuda.is_available():
            images = images.cuda()
        _images = reverse_transform_image(images, stablediffusion="stable" in model_name.lower())
        advanced = kwargs.get("advanced", False)
        if advanced:
            cluster_images, eig_magnitude = make_cluster_plot_advanced(eigvecs, _images, h=h, w=w)
        else:
            cluster_images, eig_magnitude = make_cluster_plot(eigvecs, _images, h=h, w=w, progess_start=progress_start, advanced=False)
        logging_str += f"plot time: {time.time() - start:.2f}s\n"
    
    norm_images = None
    if alignedcut_eig_norm_plot and kwargs.get("n_ret", 1) > 1:
        norm_images = []
        # eig_magnitude = torch.clamp(eig_magnitude, 0, 1)
        vmin, vmax = eig_magnitude.min(), eig_magnitude.max()
        eig_magnitude = (eig_magnitude - vmin) / (vmax - vmin)
        eig_magnitude = eig_magnitude.cpu().numpy()
        colormap = matplotlib.colormaps['Reds']
        for i_image in range(eig_magnitude.shape[0]):
            norm_image = colormap(eig_magnitude[i_image])
            # norm_image = (norm_image[..., :3] * 255).astype(np.uint8)
            # norm_images.append(Image.fromarray(norm_image))
            norm_images.append(torch.tensor(norm_image[..., :3]))
        norm_images = to_pil_images(norm_images)
        logging_str += "Eigenvector Magnitude\n"
        logging_str += f"Min: {vmin:.2f}, Max: {vmax:.2f}\n"
        gr.Info(f"Eigenvector Magnitude:</br> Min: {vmin:.2f}, Max: {vmax:.2f}", duration=10)
    
    return to_pil_images(rgb), cluster_images, norm_images, logging_str



def _ncut_run(*args, **kwargs):
    n_ret = kwargs.get("n_ret", 1)
    try:
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            
        ret = ncut_run(*args, **kwargs)
        
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        
        ret = list(ret)[:n_ret] + [ret[-1]]
        return ret
    except Exception as e:
        gr.Error(str(e))
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return *(None for _ in range(n_ret)), "Error: " + str(e)

    # ret = ncut_run(*args, **kwargs)
    # ret = list(ret)[:n_ret] + [ret[-1]]
    # return ret

if USE_HUGGINGFACE_ZEROGPU:
    @spaces.GPU(duration=30)
    def quick_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    @spaces.GPU(duration=45)
    def long_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    @spaces.GPU(duration=60)
    def longer_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    @spaces.GPU(duration=120)
    def super_duper_long_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)
    
    def cpu_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

if not USE_HUGGINGFACE_ZEROGPU:
    def quick_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    def long_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    def longer_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    def super_duper_long_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)
    
    def cpu_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

def extract_video_frames(video_path, max_frames=100):
    from decord import VideoReader
    vr = VideoReader(video_path)
    num_frames = len(vr)
    if num_frames > max_frames:
        gr.Warning(f"Video has {num_frames} frames. Only using {max_frames} frames. Evenly spaced.")
        frame_idx = np.linspace(0, num_frames - 1, max_frames, dtype=int).tolist()
    else:
        frame_idx = list(range(num_frames))
    frames = vr.get_batch(frame_idx).asnumpy()
    # return as list of PIL images
    return [(Image.fromarray(frames[i]), "") for i in range(frames.shape[0])]

def transform_image(image, resolution=(1024, 1024), stablediffusion=False):
    image = image.convert('RGB').resize(resolution, Image.LANCZOS)
    # Convert to torch tensor
    image = torch.tensor(np.array(image).transpose(2, 0, 1)).float()
    image = image / 255
    # Normalize
    if not stablediffusion:
        mean = [0.485, 0.456, 0.406]
        std = [0.229, 0.224, 0.225]
        image = (image - torch.tensor(mean).view(3, 1, 1)) / torch.tensor(std).view(3, 1, 1)
    if stablediffusion:
        image = image * 2 - 1
    return image

def reverse_transform_image(image, stablediffusion=False):
    if stablediffusion:
        image = (image + 1) / 2
    else:
        mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1).to(image.device)
        std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1).to(image.device)
        image = image * std + mean
    image = torch.clamp(image, 0, 1)
    return image

def plot_one_image_36_grid(original_image, tsne_rgb_images):
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]
    original_image = original_image * torch.tensor(std).view(3, 1, 1) + torch.tensor(mean).view(3, 1, 1)
    original_image = torch.clamp(original_image, 0, 1)
    
    fig = plt.figure(figsize=(20, 4))
    grid = plt.GridSpec(3, 14, hspace=0.1, wspace=0.1)

    ax1 = fig.add_subplot(grid[0:2, 0:2])
    img = original_image.cpu().float().numpy().transpose(1, 2, 0)

    def convert_and_pad_image(np_array, pad_size=20):
        """
        Converts a NumPy array of shape (height, width, 3) to a PNG image
        and pads the right and bottom sides with a transparent background.

        Args:
            np_array (numpy.ndarray): Input NumPy array of shape (height, width, 3)
            pad_size (int, optional): Number of pixels to pad on the right and bottom sides. Default is 20.

        Returns:
            PIL.Image: Padded PNG image with transparent background
        """
        # Convert NumPy array to PIL Image
        img = Image.fromarray(np_array)

        # Get the original size
        width, height = img.size

        # Create a new image with padding and transparent background
        new_width = width + pad_size
        new_height = height + pad_size
        padded_img = Image.new('RGBA', (new_width, new_height), color=(255, 255, 255, 0))

        # Paste the original image onto the padded image
        padded_img.paste(img, (0, 0))

        return padded_img
    
    img = convert_and_pad_image((img*255).astype(np.uint8))
    ax1.imshow(img)
    ax1.axis('off')

    model_names = ['CLIP', 'DINO', 'MAE']

    for i_model, model_name in enumerate(model_names):
        for i_layer in range(12):
            ax = fig.add_subplot(grid[i_model, i_layer+2])
            ax.imshow(tsne_rgb_images[i_layer+12*i_model].cpu().float().numpy())
            ax.axis('off')
            if i_model == 0:
                ax.set_title(f'Layer{i_layer}', fontsize=16)
            if i_layer == 0:
                ax.text(-0.1, 0.5, model_name, va="center", ha="center", fontsize=16, transform=ax.transAxes, rotation=90,)    
    plt.tight_layout()
    
    filename = uuid.uuid4()
    filename = f"/tmp/{filename}.png"
    plt.savefig(filename, bbox_inches='tight', pad_inches=0, dpi=100)
    
    img = Image.open(filename)
    img = img.convert("RGB")
    img = copy.deepcopy(img)
    
    os.remove(filename)
    
    plt.close()
    return img

def load_alignedthreemodel():
    import sys
    
    if "alignedthreeattn" not in sys.path:
        for _ in range(3):
            os.system("git clone https://huggingface.co/huzey/alignedthreeattn >> /dev/null 2>&1")
            os.system("git -C alignedthreeattn pull >> /dev/null 2>&1")
        # add to path
        sys.path.append("alignedthreeattn")
    
    
    from alignedthreeattn.alignedthreeattn_model import ThreeAttnNodes
    
    align_weights = torch.load("alignedthreeattn/align_weights.pth")
    model = ThreeAttnNodes(align_weights)
    
    return model

try:
    # pre-load the alignedthree model in case it fails to load
    load_alignedthreemodel()
except Exception as e:
    pass

promptable_diffusion_models = ["Diffusion(stabilityai/stable-diffusion-2)", "Diffusion(CompVis/stable-diffusion-v1-4)"]
promptable_segmentation_models = ["LISA(xinlai/LISA-7B-v1)"]


def run_fn(
    images,
    model_name="DiNO(dino_vitb8_448)",
    layer=10,
    num_eig=100,
    node_type="block",
    positive_prompt="",
    negative_prompt="",
    is_lisa=False,
    lisa_prompt1="",
    lisa_prompt2="",
    lisa_prompt3="",
    affinity_focal_gamma=0.5,
    num_sample_ncut=10000,
    knn_ncut=10,
    ncut_indirect_connection=True,
    ncut_make_orthogonal=False,
    embedding_method="tsne_3d",
    embedding_metric='euclidean',
    num_sample_tsne=300,
    knn_tsne=10,
    perplexity=150,
    n_neighbors=150,
    min_dist=0.1,
    sampling_method="QuickFPS",
    ncut_metric="cosine",
    old_school_ncut=False,
    max_frames=100,
    recursion=False,
    recursion_l2_n_eigs=50,
    recursion_l3_n_eigs=20,
    recursion_metric="euclidean",
    recursion_l1_gamma=0.5,
    recursion_l2_gamma=0.5,
    recursion_l3_gamma=0.5,
    node_type2="k",
    head_index_text='all',
    make_symmetric=False,
    n_ret=1,
    plot_clusters=False,
    alignedcut_eig_norm_plot=False,
    advanced=False,
    directed=False,
):
    # print(node_type2, head_index_text, make_symmetric)
    progress=gr.Progress()
    progress(0, desc="Starting")
    
    
    if images is None:
        gr.Warning("No images selected.")
        return *(None for _ in range(n_ret)), "No images selected."
    
    progress(0.05, desc="Processing Images")
    video_output = False
    if isinstance(images, str):
        images = extract_video_frames(images, max_frames=max_frames)
        video_output = True
    
    if sampling_method == "QuickFPS":
        sampling_method = "farthest"
        
    # resize the images before acquiring GPU
    if "AlignedThreeModelAttnNodes" == model_name:
        # dirty patch for the alignedcut paper
        resolution = (224, 224)
    else:
        resolution = RES_DICT[model_name]
    images = [tup[0] for tup in images]
    stablediffusion = True if "Diffusion" in model_name else False
    images = [transform_image(image, resolution=resolution, stablediffusion=stablediffusion) for image in images]
    images = torch.stack(images)
    
    progress(0.1, desc="Downloading Model")
    
    if is_lisa:
        import subprocess
        import sys
        import importlib
        gr.Warning("LISA model is not compatible with the current version of transformers. Please contact the LISA and Llava author for update.")
        gr.Warning("This is a dirty patch for the LISA model. switch to the old version of transformers.")
        gr.Warning("Not garanteed to work.")
        # LISA and Llava is not compatible with the current version of transformers
        # please contact the author for update
        # this is a dirty patch for the LISA model
        
        # pre-import the SD3 pipeline
        from diffusers import StableDiffusion3Pipeline
        
        # unloading the current transformers
        for module in list(sys.modules.keys()):
            if "transformers" in module:
                del sys.modules[module]
            

        def install_transformers_version(version, target_dir):
            """Install a specific version of transformers to a target directory."""
            if not os.path.exists(target_dir):
                os.makedirs(target_dir)
            
            # Use subprocess to run the pip command
            # subprocess.check_call([sys.executable, '-m', 'pip', 'install', f'transformers=={version}', '-t', target_dir])
            os.system(f"{sys.executable} -m pip install transformers=={version} -t {target_dir} >> /dev/null 2>&1")

        target_dir = '/tmp/lisa_transformers_v433'
        if not os.path.exists(target_dir):
            install_transformers_version('4.33.0', target_dir)

        # Add the new version path to sys.path
        sys.path.insert(0, target_dir)
        
        transformers = importlib.import_module("transformers")

    if not is_lisa:
        import subprocess
        import sys
        import importlib
        # remove the LISA model from the sys.path
            
        if "/tmp/lisa_transformers_v433" in sys.path:
            sys.path.remove("/tmp/lisa_transformers_v433")
        
        transformers = importlib.import_module("transformers")
        
    
    
    if "AlignedThreeModelAttnNodes" == model_name:
        # dirty patch for the alignedcut paper
        model = load_alignedthreemodel()
    else:
        model = load_model(model_name)
        
    if "stable" in model_name.lower() and "diffusion" in model_name.lower():
        model.timestep = layer
        layer = 1
        
    if model_name in promptable_diffusion_models:
        model.positive_prompt = positive_prompt
        model.negative_prompt = negative_prompt
        
    kwargs = {
        "model_name": model_name,
        "layer": layer,
        "num_eig": num_eig,
        "node_type": node_type,
        "affinity_focal_gamma": affinity_focal_gamma,
        "num_sample_ncut": num_sample_ncut,
        "knn_ncut": knn_ncut,
        "embedding_method": embedding_method,
        "embedding_metric": embedding_metric,
        "num_sample_tsne": num_sample_tsne,
        "knn_tsne": knn_tsne,
        "perplexity": perplexity,
        "n_neighbors": n_neighbors,
        "min_dist": min_dist,
        "sampling_method": sampling_method,
        "ncut_metric": ncut_metric,
        "indirect_connection": ncut_indirect_connection,
        "make_orthogonal": ncut_make_orthogonal,
        "old_school_ncut": old_school_ncut,
        "recursion": recursion,
        "recursion_l2_n_eigs": recursion_l2_n_eigs,
        "recursion_l3_n_eigs": recursion_l3_n_eigs,
        "recursion_metric": recursion_metric,
        "recursion_l1_gamma": recursion_l1_gamma,
        "recursion_l2_gamma": recursion_l2_gamma,
        "recursion_l3_gamma": recursion_l3_gamma,
        "video_output": video_output,
        "lisa_prompt1": lisa_prompt1,
        "lisa_prompt2": lisa_prompt2,
        "lisa_prompt3": lisa_prompt3,
        "is_lisa": is_lisa,
        "n_ret": n_ret,
        "plot_clusters": plot_clusters,
        "alignedcut_eig_norm_plot": alignedcut_eig_norm_plot,
        "advanced": advanced,
        "directed": directed,
        "node_type2": node_type2,
        "head_index_text": head_index_text,
        "make_symmetric": make_symmetric,
    }
    # print(kwargs)
    
    try:
        # try to aquiare GPU, can fail if the user is out of GPU quota
    
        if old_school_ncut:
            return super_duper_long_run(model, images, **kwargs)
        
        if is_lisa:
            return super_duper_long_run(model, images, **kwargs)
        
        num_images = len(images)
        if num_images >= 100:
            return super_duper_long_run(model, images, **kwargs)
        if 'diffusion' in model_name.lower():
            return super_duper_long_run(model, images, **kwargs)
        if recursion:
            return longer_run(model, images, **kwargs)
        if num_images >= 50:
            return longer_run(model, images, **kwargs)
        if old_school_ncut:
            return longer_run(model, images, **kwargs)
        if num_images >= 10:
            return long_run(model, images, **kwargs)
        if embedding_method == "UMAP":
            if perplexity >= 250 or num_sample_tsne >= 500:
                return longer_run(model, images, **kwargs)
            return long_run(model, images, **kwargs)
        if embedding_method == "t-SNE":
            if perplexity >= 250 or num_sample_tsne >= 500:
                return long_run(model, images, **kwargs)
            return quick_run(model, images, **kwargs)
        
        return quick_run(model, images, **kwargs)
    
    except gr.Error as e:
        # I assume this is a GPU quota error
        
        info1 = 'Running out of HuggingFace GPU Quota?</br> Please try <a style="white-space: nowrap;text-underline-offset: 2px;color: var(--body-text-color)" href="https://ncut-pytorch.readthedocs.io/en/latest/demo/">Demo hosted at UPenn</a></br>'
        info2 = 'Or try use the Python package that powers this app: <a style="white-space: nowrap;text-underline-offset: 2px;color: var(--body-text-color)" href="https://ncut-pytorch.readthedocs.io/en/latest/">ncut-pytorch</a>'
        info = info1 + info2
        
        message = "<b>HuggingFace: </b></br>" + e.message + "</br></br>---------</br>" + "<b>`ncut-pytorch` Developer: </b></br>" + info
        raise gr.Error(message, duration=0)


import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
import pytorch_lightning as pl

# Custom Dataset
class TwoTensorDataset(Dataset):
    def __init__(self, A, B):
        self.A = A
        self.B = B

    def __len__(self):
        return len(self.A)

    def __getitem__(self, idx):
        return self.A[idx], self.B[idx]

# MLP model
class MLP(pl.LightningModule):
    def __init__(self, num_layer=3, width=512, lr=3e-4, fitting_steps=10000, seg_loss_lambda=1.0):
        super().__init__()
        layers = [nn.Linear(3, width), nn.GELU()]
        for _ in range(num_layer - 1):
            layers.append(nn.Linear(width, width))
            layers.append(nn.GELU())
        layers.append(nn.Linear(width, 3))
        self.layers = nn.Sequential(*layers)
        self.mse_loss = nn.MSELoss()
        self.lr = lr
        self.fitting_steps = fitting_steps
        self.seg_loss_lambda = seg_loss_lambda
        self.progress = gr.Progress()

    def forward(self, x):
        return self.layers(x)

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.forward(x)
        loss = self.mse_loss(y_hat, y)
        # loss = torch.nn.functional.mse_loss(torch.log(y_hat), torch.log(y))
        self.log("train_loss", loss)
        
        # add segmentation constraint
        bsz = x.shape[0]
        sample_size = 1000
        if bsz > sample_size:
            idx = torch.randperm(bsz)[:sample_size]
            x = x[idx]
            y_hat = y_hat[idx]
        
        old_dist = torch.pdist(x, p=2)
        new_dist = torch.pdist(y_hat, p=2)
        # seg_loss = torch.log((old_dist - new_dist)).pow(2).mean()
        seg_loss = self.mse_loss(old_dist, new_dist)
        self.log("seg_loss", seg_loss)
        loss += seg_loss * self.seg_loss_lambda
        
        step = self.global_step
        if step % 100 == 0:
            self.progress(step / self.fitting_steps, desc="Fitting MLP")
            
        return loss
    
    def predict_step(self, batch, batch_idx, dataloader_idx=None):
        x = batch[0]
        y_hat = self.forward(x)
        return y_hat

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
        return optimizer


def fit_trans(rgb1, rgb2, num_layer=3, width=512, batch_size=256, lr=3e-4, fitting_steps=10000, fps_sample=4096, seg_loss_lambda=1.0):
    A = rgb1.clone()
    B = rgb2.clone()
    
    # FPS sample on the data
    from ncut_pytorch.ncut_pytorch import farthest_point_sampling
    A_idx = farthest_point_sampling(A, fps_sample)
    B_idx = farthest_point_sampling(B, fps_sample)
    A_B_idx = np.concatenate([A_idx, B_idx])
    A = A[A_B_idx]
    B = B[A_B_idx]

    from torch.utils.data import DataLoader, TensorDataset
    # Dataset and DataLoader
    dataset = TwoTensorDataset(A, B)
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

    # Initialize model and trainer
    mlp = MLP(num_layer=num_layer, width=width, lr=lr, fitting_steps=fitting_steps, seg_loss_lambda=seg_loss_lambda)
    trainer = pl.Trainer(
        max_epochs=100000, 
        gpus=1, 
        max_steps=fitting_steps, 
        enable_checkpointing=False,
        enable_progress_bar=False,
        gradient_clip_val=1.0
    )

    # Create a DataLoader for tensor A
    batch_size = 256  # Define your batch size
    data_loader = DataLoader(TensorDataset(rgb1), batch_size=batch_size, shuffle=False)
    

    # Train the model
    trainer.fit(mlp, dataloader)

    mlp.progress(0.99, desc="Applying MLP")
    results = trainer.predict(mlp, data_loader)
    A_transformed = torch.cat(results, dim=0)
    
    return A_transformed

if USE_HUGGINGFACE_ZEROGPU:
    @spaces.GPU(duration=60)
    def _run_mlp_fit(*args, **kwargs):
        return fit_trans(*args, **kwargs)
else:
    def _run_mlp_fit(*args, **kwargs):
        return fit_trans(*args, **kwargs)


def run_mlp_fit(input_gallery, target_gallery, num_layer=3, width=512, batch_size=256, lr=3e-4, fitting_steps=10000, fps_sample=4096, seg_loss_lambda=1.0):
    # print("Fitting MLP")
    # print("Target Gallery Length:", len(target_gallery))
    # print("Input Gallery Length:", len(input_gallery))
    if target_gallery is None or len(target_gallery) == 0:
        raise gr.Error("No target images selected. Please use the Mark button to select the target images.")
    if input_gallery is None or len(input_gallery) == 0:
        raise gr.Error("No input images selected.")
    def gallery_to_rgb(gallery):
        images = [tup[0] for tup in gallery]
        rgb = []
        for image in images:
            if isinstance(image, str):
                image = Image.open(image)
            image = image.convert('RGB')
            image = torch.tensor(np.array(image)).float()
            image = image / 255
            rgb.append(image)
        rgb = torch.stack(rgb)
        shape = rgb.shape
        rgb = rgb.reshape(-1, 3)
        return rgb, shape
    
    target_rgb, target_shape = gallery_to_rgb(target_gallery)
    input_rgb, input_shape = gallery_to_rgb(input_gallery)
    
    input_transformed = _run_mlp_fit(input_rgb, target_rgb, num_layer=num_layer, width=width, batch_size=batch_size, lr=lr, 
                                    fitting_steps=fitting_steps, fps_sample=fps_sample, seg_loss_lambda=seg_loss_lambda)
    input_transformed = input_transformed.reshape(*input_shape)
    pil_images = to_pil_images(input_transformed, resize=False)
    return pil_images

    
def make_input_video_section():
    # gr.Markdown('### Input Video')
    input_gallery = gr.Video(value=None, label="Select video", elem_id="video-input", height="auto", show_share_button=False, interactive=True)
    gr.Markdown('_image backbone model is used to extract features from each frame, NCUT is computed on all frames_')
    max_frames_number = gr.Number(100, label="Max frames", elem_id="max_frames")
    # max_frames_number = gr.Slider(1, 200, step=1, label="Max frames", value=100, elem_id="max_frames")
    submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary')
    clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button', variant='stop')
    return input_gallery, submit_button, clear_images_button, max_frames_number


def load_dataset_images(is_advanced, dataset_name, num_images=10, 
                        is_filter=False, filter_by_class_text="0,1,2", 
                        is_random=False, seed=1):
    progress = gr.Progress()
    progress(0, desc="Loading Images")
    
    if dataset_name == "EgoExo":
        is_advanced = "Basic"
        
    if is_advanced == "Basic":
        gr.Info(f"Loaded images from EgoExo")
        return default_images
    try:
        progress(0.5, desc="Downloading Dataset")
        if 'EgoThink' in dataset_name:
            dataset = load_dataset(dataset_name, 'Activity', trust_remote_code=True)
        else:
            dataset = load_dataset(dataset_name, trust_remote_code=True)
        key = list(dataset.keys())[0]
        dataset = dataset[key]
    except Exception as e:
        raise gr.Error(f"Error loading dataset {dataset_name}: {e}")
    if num_images > len(dataset):
        num_images = len(dataset)
    
    if len(filter_by_class_text) == 0:
        is_filter = False
    
    if is_filter:
        progress(0.8, desc="Filtering Images")
        classes = [int(i) for i in filter_by_class_text.split(",")]
        labels = np.array(dataset['label'])
        unique_labels = np.unique(labels)
        valid_classes = [i for i in classes if i in unique_labels]
        invalid_classes = [i for i in classes if i not in unique_labels]
        if len(invalid_classes) > 0:
            gr.Warning(f"Classes {invalid_classes} not found in the dataset.")
        if len(valid_classes) == 0:
            raise gr.Error(f"Classes {classes} not found in the dataset.")
        # shuffle each class
        chunk_size = num_images // len(valid_classes)
        image_idx = []
        for i in valid_classes:
            idx = np.where(labels == i)[0]
            if is_random:
                idx = np.random.RandomState(seed).choice(idx, chunk_size, replace=False)
            else:
                idx = idx[:chunk_size]
            image_idx.extend(idx.tolist())
    if not is_filter:
        if is_random:
            image_idx = np.random.RandomState(seed).choice(len(dataset), num_images, replace=False).tolist()
        else:
            image_idx = list(range(num_images))
    key = 'image' if 'image' in dataset[0] else list(dataset[0].keys())[0]
    images = [dataset[i][key] for i in image_idx]
    gr.Info(f"Loaded {len(images)} images from {dataset_name}")
    del dataset
    
    if dataset_name in CENTER_CROP_DATASETS:
        def center_crop_image(img):
            # image: PIL image
            w, h = img.size
            min_hw = min(h, w)
            # center crop
            left = (w - min_hw) // 2
            top = (h - min_hw) // 2
            right = left + min_hw
            bottom = top + min_hw
            img = img.crop((left, top, right, bottom))
            return img
        images = [center_crop_image(image) for image in images]
    
    return images 

def load_and_append(existing_images, *args, **kwargs):
    new_images = load_dataset_images(*args, **kwargs)
    if new_images is None:
        return existing_images
    if len(new_images) == 0:
        return existing_images
    if existing_images is None:
        existing_images = []
    existing_images += new_images
    gr.Info(f"Total images: {len(existing_images)}")
    return existing_images

def make_input_images_section(rows=1, cols=3, height="auto", advanced=False, is_random=False, allow_download=False, markdown=True):
    if markdown:
        gr.Markdown('### Input Images')
    input_gallery = gr.Gallery(value=None, label="Input images", show_label=True, elem_id="input_images", columns=[cols], rows=[rows], object_fit="contain", height=height, type="pil", show_share_button=False,
                               format="webp")
    
    submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary')
    with gr.Row():
        clear_images_button = gr.Button("🗑️ Clear", elem_id='clear_button', variant='stop')
        clear_images_button.click(fn=lambda: gr.update(value=None), outputs=[input_gallery])
        upload_button = gr.UploadButton(elem_id="upload_button", label="⬆️ Upload", variant='secondary', file_types=["image"], file_count="multiple")
        
        def convert_to_pil_and_append(images, new_images):
            if images is None:
                images = []
            if new_images is None:
                return images
            if isinstance(new_images, Image.Image):
                images.append(new_images)
            if isinstance(new_images, list):
                images += [Image.open(new_image) for new_image in new_images]
            if isinstance(new_images, str):
                images.append(Image.open(new_images))
            gr.Info(f"Total images: {len(images)}")
            return images
        upload_button.upload(convert_to_pil_and_append, inputs=[input_gallery, upload_button], outputs=[input_gallery])
    
    if allow_download:
        create_file_button, download_button = add_download_button(input_gallery, "input_images")
    
    gr.Markdown('### Load Datasets')
    advanced_radio = gr.Radio(["Basic", "Advanced"], label="Datasets Menu", value="Advanced" if advanced else "Basic", elem_id="advanced-radio", show_label=True)
    with gr.Column() as basic_block:
        # gr.Markdown('### Example Image Sets')
        def make_example(name, images, dataset_name):
            with gr.Row():
                button = gr.Button("Load\n"+name, elem_id=f"example-{name}", elem_classes="small-button", variant='secondary', size="sm", scale=1, min_width=60)
                gallery = gr.Gallery(value=images, label=name, show_label=True, columns=[3], rows=[1], interactive=False, height=80, scale=8, object_fit="cover", min_width=140, allow_preview=False)
            button.click(fn=lambda: gr.update(value=load_dataset_images(True, dataset_name, 100, is_random=True, seed=42)), outputs=[input_gallery])
            return gallery, button
        example_items = [
            ("EgoExo", ['./images/egoexo1.jpg', './images/egoexo3.jpg', './images/egoexo2.jpg'], "EgoExo"),
            ("Ego", ['./images/egothink1.jpg', './images/egothink2.jpg', './images/egothink3.jpg'], "EgoThink/EgoThink"),
            ("Face", ['./images/face1.jpg', './images/face2.jpg', './images/face3.jpg'], "nielsr/CelebA-faces"),
            ("Pose", ['./images/pose1.jpg', './images/pose2.jpg', './images/pose3.jpg'], "sayakpaul/poses-controlnet-dataset"),
            # ("CatDog", ['./images/catdog1.jpg', './images/catdog2.jpg', './images/catdog3.jpg'], "microsoft/cats_vs_dogs"),
            # ("Bird", ['./images/bird1.jpg', './images/bird2.jpg', './images/bird3.jpg'], "Multimodal-Fatima/CUB_train"),
            # ("ChestXray", ['./images/chestxray1.jpg', './images/chestxray2.jpg', './images/chestxray3.jpg'], "hongrui/mimic_chest_xray_v_1"),
            ("BrainMRI", ['./images/brain1.jpg', './images/brain2.jpg', './images/brain3.jpg'], "sartajbhuvaji/Brain-Tumor-Classification"),
            ("Kanji", ['./images/kanji1.jpg', './images/kanji2.jpg', './images/kanji3.jpg'], "yashvoladoddi37/kanjienglish"),
        ]
        for name, images, dataset_name in example_items:
            make_example(name, images, dataset_name)
    with gr.Column() as advanced_block:
        load_images_button = gr.Button("🔴 Load Images", elem_id="load-images-button", variant='primary')
        # dataset_names = DATASET_NAMES
        # dataset_classes = DATASET_CLASSES
        dataset_categories = list(DATASETS.keys())
        defualt_cat = dataset_categories[0]
        def get_choices(cat):
            return [tup[0] for tup in DATASETS[cat]]
        defualt_choices = get_choices(defualt_cat)
        with gr.Row():
            dataset_radio = gr.Radio(dataset_categories, label="Dataset Category", value=defualt_cat, elem_id="dataset-radio", show_label=True, min_width=600)
            # dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="mrm8488/ImageNet1K-val", elem_id="dataset", min_width=300)
            dataset_dropdown = gr.Dropdown(defualt_choices, label="Dataset name", value=defualt_choices[0], elem_id="dataset", min_width=400)
            dataset_radio.change(fn=lambda x: gr.update(choices=get_choices(x), value=get_choices(x)[0]), inputs=dataset_radio, outputs=dataset_dropdown)
            # num_images_slider = gr.Number(10, label="Number of images", elem_id="num_images")
            num_images_slider = gr.Slider(1, 1000, step=1, label="Number of images", value=10, elem_id="num_images", min_width=200)
            if not is_random:
                filter_by_class_checkbox = gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox")
                filter_by_class_text = gr.Textbox(label="Class to select", value="0,33,99", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. (1000 classes)", visible=True)
                # is_random_checkbox = gr.Checkbox(label="Random shuffle", value=False, elem_id="random_seed_checkbox")
                # random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=False)
                is_random_checkbox = gr.Checkbox(label="Random shuffle", value=True, elem_id="random_seed_checkbox")
                random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=True)
            if is_random:
                filter_by_class_checkbox = gr.Checkbox(label="Filter by class", value=False, elem_id="filter_by_class_checkbox")
                filter_by_class_text = gr.Textbox(label="Class to select", value="0,33,99", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. (1000 classes)", visible=False)
                is_random_checkbox = gr.Checkbox(label="Random shuffle", value=True, elem_id="random_seed_checkbox")
                random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=42, elem_id="random_seed", visible=True)
        
        # add functionality, save and load images to profile
        with gr.Accordion("Saved Image Profiles", open=False) as profile_accordion:
            with gr.Row():
                profile_text = gr.Textbox(label="Profile name", placeholder="Type here: Profile name to save/load/delete", elem_id="profile-name", scale=6, show_label=False)
                list_profiles_button = gr.Button("📋 List", elem_id="list-profile-button", variant='secondary', scale=3)
            with gr.Row():
                save_profile_button = gr.Button("💾 Save", elem_id="save-profile-button", variant='secondary')
                load_profile_button = gr.Button("📂 Load", elem_id="load-profile-button", variant='secondary')
                delete_profile_button = gr.Button("🗑️ Delete", elem_id="delete-profile-button", variant='secondary')
    
            class OnDiskProfiles:
                def __init__(self, profile_dir="demo_profiles"):
                    if not os.path.exists(profile_dir):
                        os.makedirs(profile_dir)
                    self.profile_dir = profile_dir
                
                def list_profiles(self):
                    profiles = os.listdir(self.profile_dir)
                    # remove hidden files
                    profiles = [p for p in profiles if not p.startswith(".")]
                    if len(profiles) == 0:
                        return "No profiles found."
                    profile_text = "</br>".join(profiles)
                    n_files = len(profiles)
                    profile_text = f"Number of profiles: {n_files}</br>---------</br>" + profile_text
                    return profile_text
                
                def save_profile(self, profile_name, images):
                    profile_path = os.path.join(self.profile_dir, profile_name)
                    if os.path.exists(profile_path):
                        raise gr.Error(f"Profile {profile_name} already exists.")
                    with open(profile_path, "wb") as f:
                        pickle.dump(images, f)
                    gr.Info(f"Profile {profile_name} saved.")
                    return profile_path
                
                def load_profile(self, profile_name, existing_images):
                    profile_path = os.path.join(self.profile_dir, profile_name)
                    if not os.path.exists(profile_path):
                        raise gr.Error(f"Profile {profile_name} not found.")
                    with open(profile_path, "rb") as f:
                        images = pickle.load(f)
                    gr.Info(f"Profile {profile_name} loaded.")
                    if existing_images is None:
                        existing_images = []
                    
                    return existing_images + images
                
                def delete_profile(self, profile_name):
                    profile_path = os.path.join(self.profile_dir, profile_name)
                    os.remove(profile_path)
                    gr.Info(f"Profile {profile_name} deleted.")
                    return profile_path
            
            home_dir = os.path.expanduser("~")
            defualt_dir = os.path.join(home_dir, ".cache")
            cache_dir = os.environ.get("DEMO_PROFILE_CACHE_DIR", defualt_dir)
            cache_dir = os.path.join(cache_dir, "demo_profiles")
            on_disk_profiles = OnDiskProfiles(cache_dir)
            save_profile_button.click(fn=lambda name, images: on_disk_profiles.save_profile(name, images), inputs=[profile_text, input_gallery])
            load_profile_button.click(fn=lambda name, existing_images: gr.update(value=on_disk_profiles.load_profile(name, existing_images)), inputs=[profile_text, input_gallery], outputs=[input_gallery])
            delete_profile_button.click(fn=lambda name: on_disk_profiles.delete_profile(name), inputs=profile_text)
            list_profiles_button.click(fn=lambda: gr.Info(on_disk_profiles.list_profiles(), duration=0))
    
    if advanced:
        advanced_block.visible = True
        basic_block.visible = False
    else:
        advanced_block.visible = False
        basic_block.visible = True
        
    # change visibility 
    advanced_radio.change(fn=lambda x: gr.update(visible=x=="Advanced"), inputs=advanced_radio, outputs=[advanced_block])
    advanced_radio.change(fn=lambda x: gr.update(visible=x=="Basic"), inputs=advanced_radio, outputs=[basic_block])
    
    def find_num_classes(dataset_name):
        num_classes = None
        for cat, datasets in DATASETS.items():
            datasets = [tup[0] for tup in datasets]
            if dataset_name in datasets:
                num_classes = DATASETS[cat][datasets.index(dataset_name)][1]
                break
        return num_classes
    
    def change_filter_options(dataset_name):
        num_classes = find_num_classes(dataset_name)
        if num_classes is None:
            return (gr.Checkbox(label="Filter by class", value=False, elem_id="filter_by_class_checkbox", visible=False),
                    gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info="e.g. `0,1,2`. This dataset has no class label", visible=False))
        return (gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox", visible=True),
                gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=True))
    dataset_dropdown.change(fn=change_filter_options, inputs=dataset_dropdown, outputs=[filter_by_class_checkbox, filter_by_class_text])
    
    def change_filter_by_class(is_filter, dataset_name):
        num_classes = find_num_classes(dataset_name)
        return gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=is_filter)
    filter_by_class_checkbox.change(fn=change_filter_by_class, inputs=[filter_by_class_checkbox, dataset_dropdown], outputs=filter_by_class_text)
    
    def change_random_seed(is_random):
        return gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=is_random)
    is_random_checkbox.change(fn=change_random_seed, inputs=is_random_checkbox, outputs=random_seed_slider)
    
    
    
    load_images_button.click(load_and_append, 
                        inputs=[input_gallery, advanced_radio, dataset_dropdown, num_images_slider,
                                filter_by_class_checkbox, filter_by_class_text, 
                                is_random_checkbox, random_seed_slider],
                        outputs=[input_gallery])
    
    
    
    return input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button
    


# def random_rotate_rgb_gallery(images):
#     if images is None or len(images) == 0:
#         gr.Warning("No images selected.")
#         return []
#     # read webp images
#     images = [Image.open(image[0]).convert("RGB") for image in images]
#     images = [np.array(image).astype(np.float32) for image in images]
#     images = np.stack(images)
#     images = torch.tensor(images) / 255
#     position = np.random.choice([1, 2, 4, 5, 6])
#     images = rotate_rgb_cube(images, position)
#     images = to_pil_images(images, resize=False)
#     return images

def protect_original_image_in_plot(original_image, rotated_images):
    plot_h, plot_w = 332, 1542
    image_h, image_w = original_image.shape[1], original_image.shape[2]
    if not (plot_h == image_h and plot_w == image_w):
        return rotated_images
    protection_w = 190
    rotated_images[:, :, :protection_w] = original_image[:, :, :protection_w]
    return rotated_images

def sequence_rotate_rgb_gallery(images):
    if images is None or len(images) == 0:
        gr.Warning("No images selected.")
        return []
    # read webp images
    images = [Image.open(image[0]).convert("RGB") for image in images]
    images = [np.array(image).astype(np.float32) for image in images]
    images = np.stack(images)
    images = torch.tensor(images) / 255
    original_images = images.clone()
    rotation_matrix = torch.tensor([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).float()
    images = images @ rotation_matrix
    images = protect_original_image_in_plot(original_images, images)
    images = to_pil_images(images, resize=False)
    return images

def flip_rgb_gallery(images, axis=0):
    if images is None or len(images) == 0:
        gr.Warning("No images selected.")
        return []
    # read webp images
    images = [Image.open(image[0]).convert("RGB") for image in images]
    images = [np.array(image).astype(np.float32) for image in images]
    images = np.stack(images)
    images = torch.tensor(images) / 255
    original_images = images.clone()
    images = 1 - images
    images = protect_original_image_in_plot(original_images, images)
    images = to_pil_images(images, resize=False)
    return images

def add_rotate_flip_buttons(output_gallery):
    with gr.Row():
        rotate_button = gr.Button("🔄 Rotate", elem_id="rotate_button", variant='secondary')
        rotate_button.click(sequence_rotate_rgb_gallery, inputs=[output_gallery], outputs=[output_gallery])
        flip_button = gr.Button("🔃 Flip", elem_id="flip_button", variant='secondary')
        flip_button.click(flip_rgb_gallery, inputs=[output_gallery], outputs=[output_gallery])
    return rotate_button, flip_button

def add_download_button(gallery, filename_prefix="output"):
    
    def make_3x5_plot(images):
        plot_list = []
        
        # Split the list of images into chunks of 15
        chunks = [images[i:i + 15] for i in range(0, len(images), 15)]
        
        for chunk in chunks:
            fig, axs = plt.subplots(3, 4, figsize=(12, 9))
            for ax in axs.flatten():
                ax.axis("off")
            for ax, img in zip(axs.flatten(), chunk):
                img = img.convert("RGB")
                ax.imshow(img)
            
            plt.tight_layout(h_pad=0.5, w_pad=0.3)

            # Generate a unique filename
            filename = uuid.uuid4()
            tmp_path = f"/tmp/{filename}.png"
            
            # Save the plot to the temporary file
            plt.savefig(tmp_path, bbox_inches='tight', dpi=144)
            
            # Open the saved image
            img = Image.open(tmp_path)
            img = img.convert("RGB")
            img = copy.deepcopy(img)
            
            # Remove the temporary file
            os.remove(tmp_path)

            plot_list.append(img)
            plt.close()
        
        return plot_list
    
    def delete_file_after_delay(file_path, delay):
        def delete_file():
            if os.path.exists(file_path):
                os.remove(file_path)
        
        timer = threading.Timer(delay, delete_file)
        timer.start()
    
    def create_zip_file(images, filename_prefix=filename_prefix):
        if images is None or len(images) == 0:
            gr.Warning("No images selected.")
            return None
        gr.Info("Creating zip file for download...")
        images = [image[0] for image in images]
        if isinstance(images[0], str):
            images = [Image.open(image) for image in images]
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        
        zip_filename = f"/tmp/gallery_download/{filename_prefix}_{timestamp}.zip"
        os.makedirs(os.path.dirname(zip_filename), exist_ok=True)
        
        plots = make_3x5_plot(images)
        
        
        
        with zipfile.ZipFile(zip_filename, 'w') as zipf:
            # Create a temporary directory to store images and plots
            temp_dir = f"/tmp/gallery_download/images/{uuid.uuid4()}"
            os.makedirs(temp_dir)
            
            try:
                # Save images to the temporary directory
                for i, img in enumerate(images):
                    img = img.convert("RGB")
                    img_path = os.path.join(temp_dir, f"single_{i:04d}.jpg")
                    img.save(img_path)
                    zipf.write(img_path, f"single_{i:04d}.jpg")
                
                # Save plots to the temporary directory
                for i, plot in enumerate(plots):
                    plot = plot.convert("RGB")
                    plot_path = os.path.join(temp_dir, f"grid_{i:04d}.jpg")
                    plot.save(plot_path)
                    zipf.write(plot_path, f"grid_{i:04d}.jpg")
            finally:
                # Clean up the temporary directory
                for file in os.listdir(temp_dir):
                    os.remove(os.path.join(temp_dir, file))
                os.rmdir(temp_dir)
        
        # Schedule the deletion of the zip file after 24 hours (86400 seconds)
        delete_file_after_delay(zip_filename, 86400)
        gr.Info(f"File is ready for download: {os.path.basename(zip_filename)}")
        return gr.update(value=zip_filename, interactive=True)
    
    with gr.Row():
        create_file_button = gr.Button("📦 Pack", elem_id="create_file_button", variant='secondary')
        download_button = gr.DownloadButton(label="📥 Download", value=None, variant='secondary', elem_id="download_button", interactive=False)
        
        create_file_button.click(create_zip_file, inputs=[gallery], outputs=[download_button])
        def warn_on_click(filename):
            if filename is None:
                gr.Warning("No file to download, please `📦 Pack` first.")
            interactive = filename is not None
            return gr.update(interactive=interactive)
        download_button.click(warn_on_click, inputs=[download_button], outputs=[download_button])
    
    return create_file_button, download_button


def make_output_images_section(markdown=True, button=True):
    if markdown:
        gr.Markdown('### Output Images')
    output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=True, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, interactive=False)
    if button:
        add_rotate_flip_buttons(output_gallery)
    return output_gallery

def make_parameters_section(is_lisa=False, model_ratio=True):
    gr.Markdown("### Parameters <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Help</a>")
    from ncut_pytorch.backbone import list_models, get_demo_model_names
    model_names = list_models()
    model_names = sorted(model_names)
    def get_filtered_model_names(name):
        return [m for m in model_names if name.lower() in m.lower()]
    def get_default_model_name(name):
        lst = get_filtered_model_names(name)
        if len(lst) > 1:
            return lst[1]
        return lst[0]
    
    if is_lisa:
        model_dropdown = gr.Dropdown(["LISA(xinlai/LISA-7B-v1)"], label="Backbone", value="LISA(xinlai/LISA-7B-v1)", elem_id="model_name")
        layer_slider = gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False)        
        layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"]
        positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False)
        negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False)
        node_type_dropdown = gr.Dropdown(layer_names, label="LISA (SAM) decoder: Layer and Node", value="dec_1_block", elem_id="node_type")
    else:
        model_radio = gr.Radio(["CLIP", "DiNO", "Diffusion", "ImageNet", "MAE", "SAM"], label="Backbone", value="DiNO", elem_id="model_radio", show_label=True, visible=model_ratio)
        model_dropdown = gr.Dropdown(get_filtered_model_names("DiNO"), label="", value="DiNO(dino_vitb8_448)", elem_id="model_name", show_label=False)
        model_radio.change(fn=lambda x: gr.update(choices=get_filtered_model_names(x), value=get_default_model_name(x)), inputs=model_radio, outputs=[model_dropdown])
        layer_slider = gr.Slider(1, 12, step=1, label="Backbone: Layer index", value=10, elem_id="layer")
        positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'")
        positive_prompt.visible = False
        negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'")
        negative_prompt.visible = False
        node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
    num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for smaller clusters')

    def change_layer_slider(model_name):
        # SD2, UNET
        if "stable" in model_name.lower() and "diffusion" in model_name.lower():
            from ncut_pytorch.backbone import SD_KEY_DICT
            default_layer = 'up_2_resnets_1_block' if 'diffusion-3' not in model_name else 'block_23'
            return (gr.Slider(1, 49, step=1, label="Diffusion: Timestep (Noise)", value=5, elem_id="layer", visible=True, info="Noise level, 50 is max noise"),
                    gr.Dropdown(SD_KEY_DICT[model_name], label="Diffusion: Layer and Node", value=default_layer, elem_id="node_type", info="U-Net (v1, v2) or DiT (v3)"))
        
        if model_name == "LISSL(xinlai/LISSL-7B-v1)":
            layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"]
            default_layer = "dec_1_block"
            return (gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False, info=""),
                    gr.Dropdown(layer_names, label="LISA decoder: Layer and Node", value=default_layer, elem_id="node_type"))

        layer_dict = LAYER_DICT
        if model_name in layer_dict:
            value = layer_dict[model_name]
            return (gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info=""),
                    gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?"))
        else:
            value = 12
            return (gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info=""),
                    gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?"))
    model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=[layer_slider, node_type_dropdown])
    
    def change_prompt_text(model_name):
        if model_name in promptable_diffusion_models:
            return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=True),
                    gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=True))
        return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False),
                gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False))
    model_dropdown.change(fn=change_prompt_text, inputs=model_dropdown, outputs=[positive_prompt, negative_prompt])
    
    with gr.Accordion("Advanced Parameters: NCUT", open=False):
        gr.Markdown("<a href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Docs: How to Get Better Segmentation</a>")
        affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
        num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
        # sampling_method_dropdown = gr.Dropdown(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method", info="Nyström approximation")
        sampling_method_dropdown = gr.Radio(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method")
        # ncut_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric")
        ncut_metric_dropdown = gr.Radio(["euclidean", "cosine"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric")
        ncut_knn_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation")
        ncut_indirect_connection = gr.Checkbox(label="indirect_connection", value=True, elem_id="ncut_indirect_connection", info="Add indirect connection to the sub-sampled graph")
        ncut_make_orthogonal = gr.Checkbox(label="make_orthogonal", value=False, elem_id="ncut_make_orthogonal", info="Apply post-hoc eigenvectors orthogonalization")
    with gr.Accordion("Advanced Parameters: Visualization", open=False):
        # embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
        embedding_method_dropdown = gr.Radio(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
        # embedding_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="t-SNE/UMAP metric", value="euclidean", elem_id="embedding_metric")
        embedding_metric_dropdown = gr.Radio(["euclidean", "cosine"], label="t-SNE/UMAP: metric", value="euclidean", elem_id="embedding_metric")
        num_sample_tsne_slider = gr.Slider(100, 10000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
        knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation")
        perplexity_slider = gr.Slider(10, 1000, step=10, label="t-SNE: perplexity", value=150, elem_id="perplexity")
        n_neighbors_slider = gr.Slider(10, 1000, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors")
        min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist")
    return [model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
            affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
            embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
            perplexity_slider, n_neighbors_slider, min_dist_slider, 
            sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt]

custom_css = """
#unlock_button {
    all: unset !important;
}
.form:has(#unlock_button) {
    all: unset !important;
}
"""
demo = gr.Blocks(
    theme=gr.themes.Base(spacing_size='md', text_size='lg', primary_hue='blue', neutral_hue='slate', secondary_hue='pink'),
    # fill_width=False,
    # title="ncut-pytorch",
    css=custom_css,
)
with demo:
    
    
    with gr.Tab('AlignedCut'):

        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section()
                num_images_slider.value = 30
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False)
                
            with gr.Column(scale=5, min_width=200):
                output_gallery = make_output_images_section()
                cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[2], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                    embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
                ] = make_parameters_section()

        false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
        no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
        
        submit_button.click(
            partial(run_fn, n_ret=2, plot_clusters=True),
            inputs=[
                input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
                positive_prompt, negative_prompt,
                false_placeholder, no_prompt, no_prompt, no_prompt,
                affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
            ],
            outputs=[output_gallery, cluster_gallery, logging_text],
            api_name="API_AlignedCut",
            scroll_to_output=True,
        )
        
    with gr.Tab('AlignedCut (Advanced)', visible=False) as tab_alignedcut_advanced:

        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True)
                num_images_slider.value = 100
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False, lines=20)
                
            with gr.Column(scale=5, min_width=200):
                output_gallery = make_output_images_section()
                add_download_button(output_gallery, "ncut_embed")
                norm_gallery = gr.Gallery(value=[], label="Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
                add_download_button(norm_gallery, "eig_norm")
                cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
                add_download_button(cluster_gallery, "clusters")
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                    embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
                ] = make_parameters_section()
                num_eig_slider.value = 100
        
        false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
        no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
        
        submit_button.click(
            partial(run_fn, n_ret=3, plot_clusters=True, alignedcut_eig_norm_plot=True, advanced=True),
            inputs=[
                input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
                positive_prompt, negative_prompt,
                false_placeholder, no_prompt, no_prompt, no_prompt,
                affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
            ],
            outputs=[output_gallery, cluster_gallery, norm_gallery, logging_text],
            scroll_to_output=True,
        )
        
    with gr.Tab('NCut'): 
        gr.Markdown('#### NCut (Legacy), not aligned, no Nyström approximation')
        gr.Markdown('Each image is solved independently, <em>color is <b>not</b> aligned across images</em>')
        
        gr.Markdown('---')
        gr.Markdown('<p style="text-align: center;"><b>NCut    vs.   AlignedCut</b></p>')
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('#### Pros')
                gr.Markdown('- Easy Solution. Use less eigenvectors.')
                gr.Markdown('- Exact solution. No Nyström approximation.')
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('#### Cons')
                gr.Markdown('- Not aligned. Distance is not preserved across images. No pseudo-labeling or correspondence.')
                gr.Markdown('- Poor complexity scaling. Unable to handle large number of pixels.')
        gr.Markdown('---')
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                gr.Markdown(' ')
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('<em>color is <b>not</b> aligned across images</em> 👇')


        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section()
                
            with gr.Column(scale=5, min_width=200):
                output_gallery = make_output_images_section()
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                    embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
                ] = make_parameters_section()
                old_school_ncut_checkbox = gr.Checkbox(label="Old school NCut", value=True, elem_id="old_school_ncut")
                invisible_list = [old_school_ncut_checkbox, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
                                    num_sample_tsne_slider, knn_tsne_slider, sampling_method_dropdown, ncut_metric_dropdown]
                for item in invisible_list:
                    item.visible = False
                # logging text box
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
            
        false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
        no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
        
        submit_button.click(
            run_fn,
            inputs=[
                input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
                positive_prompt, negative_prompt,
                false_placeholder, no_prompt, no_prompt, no_prompt,
                affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown,
                old_school_ncut_checkbox
            ],
            outputs=[output_gallery, logging_text],
            api_name="API_NCut",
        )
        
    with gr.Tab('Recursive Cut'): 
        gr.Markdown('NCUT can be applied recursively, the eigenvectors from previous iteration is the input for the next iteration NCUT. ')
        gr.Markdown('__Recursive NCUT__ can amplify or weaken the connections, depending on the `affinity_focal_gamma` setting, please see [Documentation](https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/#recursive-ncut)')
                
        gr.Markdown('---')

        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section()
                num_images_slider.value = 100
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('### Output (Recursion #1)')
                l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=True, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
                add_rotate_flip_buttons(l1_gallery)
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('### Output (Recursion #2)')
                l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=True, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
                add_rotate_flip_buttons(l2_gallery)
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('### Output (Recursion #3)')
                l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=True, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
                add_rotate_flip_buttons(l3_gallery)
        with gr.Row():
                
            with gr.Column(scale=5, min_width=200):
                with gr.Accordion("➡️ Recursion config", open=True):
                    l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig")
                    l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig")
                    l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig")
                    metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric")
                    l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.7, elem_id="recursion_l1_gamma")
                    l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.7, elem_id="recursion_l2_gamma")
                    l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma")
            with gr.Column(scale=5, min_width=200):
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                    embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
                ] = make_parameters_section()
                num_eig_slider.visible = False
                affinity_focal_gamma_slider.visible = False
        true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder")
        true_placeholder.visible = False
        false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder")
        false_placeholder.visible = False
        number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder")
        number_placeholder.visible = False
        no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
        
        submit_button.click(
            partial(run_fn, n_ret=3),
            inputs=[
                input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown, 
                positive_prompt, negative_prompt,
                false_placeholder, no_prompt, no_prompt, no_prompt,
                affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown,
                false_placeholder, number_placeholder, true_placeholder,
                l2_num_eig_slider, l3_num_eig_slider, metric_dropdown, 
                l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider
            ],
            outputs=[l1_gallery, l2_gallery, l3_gallery, logging_text],
            api_name="API_RecursiveCut"
        )
        
    with gr.Tab('Recursive Cut (Advanced)', visible=False) as tab_recursivecut_advanced:

        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True)
                num_images_slider.value = 100
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", lines=20)
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('### Output (Recursion #1)')
                l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=True, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
                add_rotate_flip_buttons(l1_gallery)
                add_download_button(l1_gallery, "ncut_embed_recur1")
                l1_norm_gallery = gr.Gallery(value=[], label="Recursion #1 Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
                add_download_button(l1_norm_gallery, "eig_norm_recur1")
                l1_cluster_gallery = gr.Gallery(value=[], label="Recursion #1 Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height='auto', show_share_button=True, preview=False, interactive=False)
                add_download_button(l1_cluster_gallery, "clusters_recur1")
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('### Output (Recursion #2)')
                l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=True, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
                add_rotate_flip_buttons(l2_gallery)
                add_download_button(l2_gallery, "ncut_embed_recur2")
                l2_norm_gallery = gr.Gallery(value=[], label="Recursion #2 Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
                add_download_button(l2_norm_gallery, "eig_norm_recur2")
                l2_cluster_gallery = gr.Gallery(value=[], label="Recursion #2 Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height='auto', show_share_button=True, preview=False, interactive=False)
                add_download_button(l2_cluster_gallery, "clusters_recur2")
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('### Output (Recursion #3)')
                l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=True, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
                add_rotate_flip_buttons(l3_gallery)
                add_download_button(l3_gallery, "ncut_embed_recur3")
                l3_norm_gallery = gr.Gallery(value=[], label="Recursion #3 Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
                add_download_button(l3_norm_gallery, "eig_norm_recur3")
                l3_cluster_gallery = gr.Gallery(value=[], label="Recursion #3 Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height='auto', show_share_button=True, preview=False, interactive=False)
                add_download_button(l3_cluster_gallery, "clusters_recur3")
        
        with gr.Row():        
            with gr.Column(scale=5, min_width=200):
                with gr.Accordion("➡️ Recursion config", open=True):
                    l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig")
                    l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig")
                    l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig")
                    metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric")
                    l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.7, elem_id="recursion_l1_gamma")
                    l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.7, elem_id="recursion_l2_gamma")
                    l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma")
            with gr.Column(scale=5, min_width=200):
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                    embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
                ] = make_parameters_section()
                num_eig_slider.visible = False
                affinity_focal_gamma_slider.visible = False
        true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder")
        true_placeholder.visible = False
        false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder")
        false_placeholder.visible = False
        number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder")
        number_placeholder.visible = False
        no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
        
        submit_button.click(
            partial(run_fn, n_ret=9, advanced=True),
            inputs=[
                input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown, 
                positive_prompt, negative_prompt,
                false_placeholder, no_prompt, no_prompt, no_prompt,
                affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown,
                false_placeholder, number_placeholder, true_placeholder,
                l2_num_eig_slider, l3_num_eig_slider, metric_dropdown, 
                l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider
            ],
            outputs=[l1_gallery, l2_gallery, l3_gallery, l1_norm_gallery, l2_norm_gallery, l3_norm_gallery, l1_cluster_gallery, l2_cluster_gallery, l3_cluster_gallery, logging_text],
        )

        
    with gr.Tab('Video'): 
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                video_input_gallery, submit_button, clear_video_button, max_frame_number = make_input_video_section()
            with gr.Column(scale=5, min_width=200):
                video_output_gallery = gr.Video(value=None, label="NCUT Embedding", elem_id="ncut", height="auto", show_share_button=False)
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                    embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
                ] = make_parameters_section()
                num_sample_tsne_slider.value = 1000
                perplexity_slider.value = 500
                n_neighbors_slider.value = 500
                knn_tsne_slider.value = 20
                # logging text box
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
        clear_video_button.click(lambda x: (None, None), outputs=[video_input_gallery, video_output_gallery])
        place_holder_false = gr.Checkbox(label="Place holder", value=False, elem_id="place_holder_false")
        place_holder_false.visible = False
        false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
        no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
        
        submit_button.click(
            run_fn,
            inputs=[
                video_input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
                positive_prompt, negative_prompt,
                false_placeholder, no_prompt, no_prompt, no_prompt,
                affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown,
                place_holder_false, max_frame_number
            ],
            outputs=[video_output_gallery, logging_text],
            api_name="API_VideoCut",
        )    
    
    with gr.Tab('Text'): 
        try:
            from app_text import make_demo
        except ImportError:
            print("Debugging")
            from draft_gradio_app_text import make_demo
        make_demo()
        
    with gr.Tab('Vision-Language'):
        gr.Markdown('[LISA](https://arxiv.org/pdf/2308.00692) is a vision-language model. Input a text prompt and image, LISA generate segmentation masks.')
        gr.Markdown('In the mask decoder layers, LISA updates the image features w.r.t. the text prompt')
        gr.Markdown('This page aims to see how the text prompt affects the image features')
        gr.Markdown('---')
        gr.Markdown('<p style="text-align: center;">Color is <b>aligned</b> across 3 prompts. NCUT is computed on the concatenated features from 3 prompts.</p>')
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('### Output (Prompt #1)')
                l1_gallery = gr.Gallery(format='png', value=[], label="Prompt #1", show_label=False, elem_id="ncut_p1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
                prompt1 = gr.Textbox(label="Input Prompt #1", elem_id="prompt1", value="where is the person, include the clothes, don't include the guitar and chair", lines=3)
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('### Output (Prompt #2)')
                l2_gallery = gr.Gallery(format='png', value=[], label="Prompt #2", show_label=False, elem_id="ncut_p2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
                prompt2 = gr.Textbox(label="Input Prompt #2", elem_id="prompt2", value="where is the Gibson Les Pual guitar", lines=3)
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('### Output (Prompt #3)')
                l3_gallery = gr.Gallery(format='png', value=[], label="Prompt #3", show_label=False, elem_id="ncut_p3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
                prompt3 = gr.Textbox(label="Input Prompt #3", elem_id="prompt3", value="where is the floor", lines=3)
                
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section()
                
            with gr.Column(scale=5, min_width=200):
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                    embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
                ] = make_parameters_section(is_lisa=True)
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
        
        galleries = [l1_gallery, l2_gallery, l3_gallery]
        true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder", visible=False)
        submit_button.click(
            partial(run_fn, n_ret=len(galleries)),
            inputs=[
                input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
                positive_prompt, negative_prompt,
                true_placeholder, prompt1, prompt2, prompt3,
                affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
            ],
            outputs=galleries + [logging_text],
        )
                
    with gr.Tab('Model Aligned'): 
        gr.Markdown('This page reproduce the results from the paper [AlignedCut](https://arxiv.org/abs/2406.18344)')
        gr.Markdown('---')
        gr.Markdown('**Features are aligned across models and layers.** A linear alignment transform is trained for each model/layer, learning signal comes from 1) fMRI brain activation and 2) segmentation preserving eigen-constraints.')
        gr.Markdown('NCUT is computed on the concatenated graph of all models, layers, and images. Color is **aligned** across all models and layers.')
        gr.Markdown('')
        gr.Markdown("To see a good pattern, you will need to load 100~1000 images. 100 images need 10sec for RTX4090. Running out of HuggingFace GPU Quota? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn")
        gr.Markdown('---')
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section()
                num_images_slider.value = 100
                
                
            with gr.Column(scale=5, min_width=200):
                output_gallery = make_output_images_section()
                gr.Markdown('### TIP1: use the `full-screen` button, and use `arrow keys` to navigate')
                gr.Markdown('---')
                gr.Markdown('Model: CLIP(ViT-B-16/openai), DiNOv2reg(dinov2_vitb14_reg), MAE(vit_base)')
                gr.Markdown('Layer type: attention output (attn), without sum of residual')
                gr.Markdown('### TIP2: for large image set, please increase the `num_sample` for t-SNE and NCUT')
                gr.Markdown('---')
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                    embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
                ] = make_parameters_section(model_ratio=False)
                model_dropdown.value = "AlignedThreeModelAttnNodes"
                model_dropdown.visible = False
                layer_slider.visible = False
                node_type_dropdown.visible = False
                num_sample_ncut_slider.value = 10000
                num_sample_tsne_slider.value = 1000
                # logging text box
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
                        
        false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
        no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
        
        submit_button.click(
            run_fn,
            inputs=[
                input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
                positive_prompt, negative_prompt,
                false_placeholder, no_prompt, no_prompt, no_prompt,
                affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
            ],
            # outputs=galleries + [logging_text],
            outputs=[output_gallery, logging_text],
        )
        
    with gr.Tab('Model Aligned (Advanced)', visible=False) as tab_model_aligned_advanced: 
        gr.Markdown('This page reproduce the results from the paper [AlignedCut](https://arxiv.org/abs/2406.18344)')
        gr.Markdown('---')
        gr.Markdown('**Features are aligned across models and layers.** A linear alignment transform is trained for each model/layer, learning signal comes from 1) fMRI brain activation and 2) segmentation preserving eigen-constraints.')
        gr.Markdown('NCUT is computed on the concatenated graph of all models, layers, and images. Color is **aligned** across all models and layers.')
        gr.Markdown('')
        gr.Markdown("To see a good pattern, you will need to load 100~1000 images. 100 images need 10sec for RTX4090. Running out of HuggingFace GPU Quota? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn")
        gr.Markdown('---')

        # with gr.Row():
        #     with gr.Column(scale=5, min_width=200):
        #         gr.Markdown('### Output (Recursion #1)')
        #         l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=False, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
        #         add_output_images_buttons(l1_gallery)
        #     with gr.Column(scale=5, min_width=200):
        #         gr.Markdown('### Output (Recursion #2)')
        #         l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=False, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
        #         add_output_images_buttons(l2_gallery)
        #     with gr.Column(scale=5, min_width=200):
        #         gr.Markdown('### Output (Recursion #3)')
        #         l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=False, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
        #         add_output_images_buttons(l3_gallery)    
        gr.Markdown('### Output (Recursion #1)')
        l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=True, elem_id="ncut_l1", columns=[100], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False, preview=True)
        add_rotate_flip_buttons(l1_gallery)
        add_download_button(l1_gallery, "modelaligned_recur1")
        gr.Markdown('### Output (Recursion #2)')
        l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=True, elem_id="ncut_l2", columns=[100], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False, preview=True)
        add_rotate_flip_buttons(l2_gallery)
        add_download_button(l2_gallery, "modelaligned_recur2")
        gr.Markdown('### Output (Recursion #3)')
        l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=True, elem_id="ncut_l3", columns=[100], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False, preview=True)
        add_rotate_flip_buttons(l3_gallery)  
        add_download_button(l3_gallery, "modelaligned_recur3")
    
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True)
                num_images_slider.value = 100
                
                
            with gr.Column(scale=5, min_width=200):
                with gr.Accordion("➡️ Recursion config", open=True):
                    l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig")
                    l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig")
                    l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig")
                    metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric")
                    l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.5, elem_id="recursion_l1_gamma")
                    l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.5, elem_id="recursion_l2_gamma")
                    l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma")
                gr.Markdown('---')
                gr.Markdown('Model: CLIP(ViT-B-16/openai), DiNOv2reg(dinov2_vitb14_reg), MAE(vit_base)')
                gr.Markdown('Layer type: attention output (attn), without sum of residual')
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                    embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
                ] = make_parameters_section(model_ratio=False)
                num_eig_slider.visible = False
                affinity_focal_gamma_slider.visible = False
                model_dropdown.value = "AlignedThreeModelAttnNodes"
                model_dropdown.visible = False
                layer_slider.visible = False
                node_type_dropdown.visible = False
                num_sample_ncut_slider.value = 10000
                num_sample_tsne_slider.value = 1000
                # logging text box
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
                        
        true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder")
        true_placeholder.visible = False
        false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder")
        false_placeholder.visible = False
        number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder")
        number_placeholder.visible = False
        no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
        
        submit_button.click(
            partial(run_fn, n_ret=3, advanced=True),
            inputs=[
                input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown, 
                positive_prompt, negative_prompt,
                false_placeholder, no_prompt, no_prompt, no_prompt,
                affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown,
                false_placeholder, number_placeholder, true_placeholder,
                l2_num_eig_slider, l3_num_eig_slider, metric_dropdown, 
                l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider
            ],
            outputs=[l1_gallery, l2_gallery, l3_gallery, logging_text],
        )
    
    
    with gr.Tab('Compare Models'): 
        def add_one_model(i_model=1):
            with gr.Column(scale=5, min_width=200) as col:
                gr.Markdown(f'### Output Images')
                output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=False, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
                submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary')
                add_rotate_flip_buttons(output_gallery)
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                    embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
                ] = make_parameters_section()
                # logging text box
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
                false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
                no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
                
                submit_button.click(
                    run_fn,
                    inputs=[
                        input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
                        positive_prompt, negative_prompt,
                        false_placeholder, no_prompt, no_prompt, no_prompt,
                        affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                        embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                        perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
                    ],
                    outputs=[output_gallery, logging_text]
                )
                
                return col

        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section()
                submit_button.visible = False

                
            for i in range(3):
                add_one_model()
                
        # Create rows and buttons in a loop
        rows = []
        buttons = []

        for i in range(4):
            row = gr.Row(visible=False)
            rows.append(row)
            
            with row:
                for j in range(4):
                    with gr.Column(scale=5, min_width=200):
                        add_one_model()

            button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3)
            buttons.append(button)
            
            if i > 0:
                # Reveal the current row and next button
                buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row)
                buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button)
                
                # Hide the current button
                buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1])

        # Last button only reveals the last row and hides itself
        buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1])
        buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1])
    
    with gr.Tab('Compare Models (Advanced)', visible=False) as tab_compare_models_advanced: 
        
        target_images = gr.State([])
        input_images = gr.State([])
        def add_mlp_fitting_buttons(output_gallery, mlp_gallery, target_images=target_images, input_images=input_images):
            with gr.Row():
                # mark_as_target_button = gr.Button("mark target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary')
                # mark_as_input_button = gr.Button("mark input", elem_id=f"mark_as_input_button_{output_gallery.elem_id}", variant='secondary')
                mark_as_target_button = gr.Button("🎯 Mark Target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary')
            fit_to_target_button = gr.Button("🔴 [MLP] Fit", elem_id=f"fit_to_target_button_{output_gallery.elem_id}", variant='primary')
            def mark_fn(images, text="target"):
                if images is None:
                    raise gr.Error("No images selected")
                if len(images) == 0:
                    raise gr.Error("No images selected")
                num_images = len(images)
                gr.Info(f"Marked {num_images} images as {text}")
                images = [(Image.open(tup[0]), []) for tup in images]
                return images
            mark_as_target_button.click(partial(mark_fn, text="target"), inputs=[output_gallery], outputs=[target_images])
            # mark_as_input_button.click(partial(mark_fn, text="input"), inputs=[output_gallery], outputs=[input_images])
            
            with gr.Accordion("➡️ MLP Parameters", open=False):
                num_layers_slider = gr.Slider(2, 10, step=1, label="Number of Layers", value=3, elem_id=f"num_layers_slider_{output_gallery.elem_id}")
                width_slider = gr.Slider(128, 4096, step=128, label="Width", value=512, elem_id=f"width_slider_{output_gallery.elem_id}")
                batch_size_slider = gr.Slider(32, 4096, step=32, label="Batch Size", value=128, elem_id=f"batch_size_slider_{output_gallery.elem_id}")
                lr_slider = gr.Slider(1e-6, 1, step=1e-6, label="Learning Rate", value=3e-4, elem_id=f"lr_slider_{output_gallery.elem_id}")
                fitting_steps_slider = gr.Slider(1000, 100000, step=1000, label="Fitting Steps", value=30000, elem_id=f"fitting_steps_slider_{output_gallery.elem_id}")
                fps_sample_slider = gr.Slider(128, 50000, step=128, label="FPS Sample", value=10240, elem_id=f"fps_sample_slider_{output_gallery.elem_id}")
                segmentation_loss_lambda_slider = gr.Slider(0, 100, step=0.01, label="Segmentation Preserving Loss Lambda", value=1, elem_id=f"segmentation_loss_lambda_slider_{output_gallery.elem_id}")
                
            fit_to_target_button.click(
                run_mlp_fit,
                inputs=[output_gallery, target_images, num_layers_slider, width_slider, batch_size_slider, lr_slider, fitting_steps_slider, fps_sample_slider, segmentation_loss_lambda_slider],
                outputs=[mlp_gallery],
            )
                
        def add_one_model(i_model=1):
            with gr.Column(scale=5, min_width=200) as col:
                gr.Markdown(f'### Output Images')
                output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=True, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
                submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary')
                add_rotate_flip_buttons(output_gallery)
                add_download_button(output_gallery, f"ncut_embed")
                mlp_gallery = gr.Gallery(format='png', value=[], label="MLP color align", show_label=True, elem_id=f"mlp{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
                add_mlp_fitting_buttons(output_gallery, mlp_gallery)
                add_download_button(mlp_gallery, f"mlp_color_align")
                norm_gallery = gr.Gallery(value=[], label="Eigenvector Magnitude", show_label=True, elem_id=f"eig_norm{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
                add_download_button(norm_gallery, f"eig_norm")
                cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id=f"clusters{i_model}", columns=[2], rows=[4], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
                add_download_button(cluster_gallery, f"clusters")
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                    embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
                ] = make_parameters_section()
                # logging text box
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
                false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
                no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
                
                submit_button.click(
                    partial(run_fn, n_ret=3, plot_clusters=True, alignedcut_eig_norm_plot=True, advanced=True),
                    inputs=[
                        input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
                        positive_prompt, negative_prompt,
                        false_placeholder, no_prompt, no_prompt, no_prompt,
                        affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                        embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                        perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
                    ],
                    outputs=[output_gallery, cluster_gallery, norm_gallery, logging_text]
                )
                
                output_gallery.change(lambda x: gr.update(value=x), inputs=[output_gallery], outputs=[mlp_gallery])
                
                return output_gallery

        galleries = []
        
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True)
                submit_button.visible = False

                
            for i in range(3):
                g = add_one_model()
                galleries.append(g)
                
        # Create rows and buttons in a loop
        rows = []
        buttons = []

        for i in range(4):
            row = gr.Row(visible=False)
            rows.append(row)
            
            with row:
                for j in range(4):
                    with gr.Column(scale=5, min_width=200):
                        g = add_one_model()
                        galleries.append(g)

            button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3)
            buttons.append(button)
            
            if i > 0:
                # Reveal the current row and next button
                buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row)
                buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button)
                
                # Hide the current button
                buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1])

        # Last button only reveals the last row and hides itself
        buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1])
        buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1])


    with gr.Tab('Directed (experimental)', visible=False) as tab_directed_ncut: 
        
        target_images = gr.State([])
        input_images = gr.State([])
        def add_mlp_fitting_buttons(output_gallery, mlp_gallery, target_images=target_images, input_images=input_images):
            with gr.Row():
                # mark_as_target_button = gr.Button("mark target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary')
                # mark_as_input_button = gr.Button("mark input", elem_id=f"mark_as_input_button_{output_gallery.elem_id}", variant='secondary')
                mark_as_target_button = gr.Button("🎯 Mark Target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary')
            fit_to_target_button = gr.Button("🔴 [MLP] Fit", elem_id=f"fit_to_target_button_{output_gallery.elem_id}", variant='primary')
            def mark_fn(images, text="target"):
                if images is None:
                    raise gr.Error("No images selected")
                if len(images) == 0:
                    raise gr.Error("No images selected")
                num_images = len(images)
                gr.Info(f"Marked {num_images} images as {text}")
                images = [(Image.open(tup[0]), []) for tup in images]
                return images
            mark_as_target_button.click(partial(mark_fn, text="target"), inputs=[output_gallery], outputs=[target_images])
            # mark_as_input_button.click(partial(mark_fn, text="input"), inputs=[output_gallery], outputs=[input_images])
            
            with gr.Accordion("➡️ MLP Parameters", open=False):
                num_layers_slider = gr.Slider(2, 10, step=1, label="Number of Layers", value=3, elem_id=f"num_layers_slider_{output_gallery.elem_id}")
                width_slider = gr.Slider(128, 4096, step=128, label="Width", value=512, elem_id=f"width_slider_{output_gallery.elem_id}")
                batch_size_slider = gr.Slider(32, 4096, step=32, label="Batch Size", value=128, elem_id=f"batch_size_slider_{output_gallery.elem_id}")
                lr_slider = gr.Slider(1e-6, 1, step=1e-6, label="Learning Rate", value=3e-4, elem_id=f"lr_slider_{output_gallery.elem_id}")
                fitting_steps_slider = gr.Slider(1000, 100000, step=1000, label="Fitting Steps", value=30000, elem_id=f"fitting_steps_slider_{output_gallery.elem_id}")
                fps_sample_slider = gr.Slider(128, 50000, step=128, label="FPS Sample", value=10240, elem_id=f"fps_sample_slider_{output_gallery.elem_id}")
                segmentation_loss_lambda_slider = gr.Slider(0, 100, step=0.01, label="Segmentation Preserving Loss Lambda", value=1, elem_id=f"segmentation_loss_lambda_slider_{output_gallery.elem_id}")
                
            fit_to_target_button.click(
                run_mlp_fit,
                inputs=[output_gallery, target_images, num_layers_slider, width_slider, batch_size_slider, lr_slider, fitting_steps_slider, fps_sample_slider, segmentation_loss_lambda_slider],
                outputs=[mlp_gallery],
            )

        def make_parameters_section_2model(model_ratio=True):
            gr.Markdown("### Parameters <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Help</a>")
            from ncut_pytorch.backbone import list_models, get_demo_model_names
            model_names = list_models()
            model_names = sorted(model_names)
            # only CLIP DINO MAE is implemented for q k v
            ok_models = ["CLIP(ViT", "DiNO(", "MAE("]
            model_names = [m for m in model_names if any(ok in m for ok in ok_models)]
            
            def get_filtered_model_names(name):
                return [m for m in model_names if name.lower() in m.lower()]
            def get_default_model_name(name):
                lst = get_filtered_model_names(name)
                if len(lst) > 1:
                    return lst[1]
                return lst[0]
            

            model_radio = gr.Radio(["CLIP", "DiNO", "MAE"], label="Backbone", value="DiNO", elem_id="model_radio", show_label=True, visible=model_ratio)
            model_dropdown = gr.Dropdown(get_filtered_model_names("DiNO"), label="", value="DiNO(dino_vitb8_448)", elem_id="model_name", show_label=False)
            model_radio.change(fn=lambda x: gr.update(choices=get_filtered_model_names(x), value=get_default_model_name(x)), inputs=model_radio, outputs=[model_dropdown])
            layer_slider = gr.Slider(1, 12, step=1, label="Backbone: Layer index", value=10, elem_id="layer")
            positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'")
            positive_prompt.visible = False
            negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'")
            negative_prompt.visible = False
            node_type_dropdown = gr.Dropdown(['q', 'k', 'v'], 
                                            label="Left-side Node Type", value="q", elem_id="node_type", info="In directed case, left-side SVD eigenvector is taken")
            node_type_dropdown2 = gr.Dropdown(['q', 'k', 'v'], 
                                            label="Right-side Node Type", value="k", elem_id="node_type2")
            head_index_text = gr.Textbox(value='all', label="Head Index", elem_id="head_index", type="text", info="which attention heads to use, comma separated, e.g. 0,1,2")
            make_symmetric = gr.Checkbox(label="Make Symmetric", value=False, elem_id="make_symmetric", info="make the graph symmetric by A = (A + A.T) / 2")
            
            num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for smaller clusters')

            def change_layer_slider(model_name):
                # SD2, UNET
                if "stable" in model_name.lower() and "diffusion" in model_name.lower():
                    from ncut_pytorch.backbone import SD_KEY_DICT
                    default_layer = 'up_2_resnets_1_block' if 'diffusion-3' not in model_name else 'block_23'
                    return (gr.Slider(1, 49, step=1, label="Diffusion: Timestep (Noise)", value=5, elem_id="layer", visible=True, info="Noise level, 50 is max noise"),
                            gr.Dropdown(SD_KEY_DICT[model_name], label="Diffusion: Layer and Node", value=default_layer, elem_id="node_type", info="U-Net (v1, v2) or DiT (v3)"))
                
                if model_name == "LISSL(xinlai/LISSL-7B-v1)":
                    layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"]
                    default_layer = "dec_1_block"
                    return (gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False, info=""),
                            gr.Dropdown(layer_names, label="LISA decoder: Layer and Node", value=default_layer, elem_id="node_type"))

                layer_dict = LAYER_DICT
                if model_name in layer_dict:
                    value = layer_dict[model_name]
                    return gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info="")
                else:
                    value = 12
                    return gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info="")            
            model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=layer_slider)
            
            def change_prompt_text(model_name):
                if model_name in promptable_diffusion_models:
                    return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=True),
                            gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=True))
                return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False),
                        gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False))
            model_dropdown.change(fn=change_prompt_text, inputs=model_dropdown, outputs=[positive_prompt, negative_prompt])
            
            with gr.Accordion("Advanced Parameters: NCUT", open=False):
                gr.Markdown("<a href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Docs: How to Get Better Segmentation</a>")
                affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
                num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
                # sampling_method_dropdown = gr.Dropdown(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method", info="Nyström approximation")
                sampling_method_dropdown = gr.Radio(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method")
                # ncut_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric")
                ncut_metric_dropdown = gr.Radio(["euclidean", "cosine"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric")
                ncut_knn_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation")
                ncut_indirect_connection = gr.Checkbox(label="indirect_connection", value=False, elem_id="ncut_indirect_connection", info="TODO: Indirect connection is not implemented for directed NCUT", interactive=False)
                ncut_make_orthogonal = gr.Checkbox(label="make_orthogonal", value=False, elem_id="ncut_make_orthogonal", info="Apply post-hoc eigenvectors orthogonalization")
            with gr.Accordion("Advanced Parameters: Visualization", open=False):
                # embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
                embedding_method_dropdown = gr.Radio(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
                # embedding_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="t-SNE/UMAP metric", value="euclidean", elem_id="embedding_metric")
                embedding_metric_dropdown = gr.Radio(["euclidean", "cosine"], label="t-SNE/UMAP: metric", value="euclidean", elem_id="embedding_metric")
                num_sample_tsne_slider = gr.Slider(100, 10000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
                knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation")
                perplexity_slider = gr.Slider(10, 1000, step=10, label="t-SNE: perplexity", value=150, elem_id="perplexity")
                n_neighbors_slider = gr.Slider(10, 1000, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors")
                min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist")
            return [model_dropdown, layer_slider, node_type_dropdown, node_type_dropdown2, head_index_text, make_symmetric, num_eig_slider,
                    affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
                    embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt]
            
        def add_one_model(i_model=1):
            with gr.Column(scale=5, min_width=200) as col:
                gr.Markdown(f'### Output Images')
                output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=True, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
                submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary')
                add_rotate_flip_buttons(output_gallery)
                add_download_button(output_gallery, f"ncut_embed")
                mlp_gallery = gr.Gallery(format='png', value=[], label="MLP color align", show_label=True, elem_id=f"mlp{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
                add_mlp_fitting_buttons(output_gallery, mlp_gallery)
                add_download_button(mlp_gallery, f"mlp_color_align")
                norm_gallery = gr.Gallery(value=[], label="Eigenvector Magnitude", show_label=True, elem_id=f"eig_norm{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
                add_download_button(norm_gallery, f"eig_norm")
                cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id=f"clusters{i_model}", columns=[2], rows=[4], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
                add_download_button(cluster_gallery, f"clusters")
                [
                    model_dropdown, layer_slider, node_type_dropdown, node_type_dropdown2, head_index_text, make_symmetric, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                    embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
                ] = make_parameters_section_2model()
                # logging text box
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
                false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
                no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
                
                false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
                
                submit_button.click(
                    partial(run_fn, n_ret=3, plot_clusters=True, alignedcut_eig_norm_plot=True, advanced=True, directed=True),
                    inputs=[
                        input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
                        positive_prompt, negative_prompt,
                        false_placeholder, no_prompt, no_prompt, no_prompt,
                        affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                        embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                        perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown,
                        *[false_placeholder for _ in range(9)],
                        node_type_dropdown2, head_index_text, make_symmetric
                    ],
                    outputs=[output_gallery, cluster_gallery, norm_gallery, logging_text]
                )
                
                output_gallery.change(lambda x: gr.update(value=x), inputs=[output_gallery], outputs=[mlp_gallery])
                
                return output_gallery

        galleries = []
        
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True)
                submit_button.visible = False

                
            for i in range(3):
                g = add_one_model()
                galleries.append(g)
                
        # Create rows and buttons in a loop
        rows = []
        buttons = []

        for i in range(4):
            row = gr.Row(visible=False)
            rows.append(row)
            
            with row:
                for j in range(4):
                    with gr.Column(scale=5, min_width=200):
                        g = add_one_model()
                        galleries.append(g)

            button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3)
            buttons.append(button)
            
            if i > 0:
                # Reveal the current row and next button
                buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row)
                buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button)
                
                # Hide the current button
                buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1])

        # Last button only reveals the last row and hides itself
        buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1])
        buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1])

    with gr.Tab('Application'):
        gr.Markdown("Draw some points on the image to find corrsponding segments in other images. E.g. click on one face to segment all the face. [Video Tutorial](https://ncut-pytorch.readthedocs.io/en/latest/gallery_application/)")
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                gr.Markdown("### Step 0: Load Images")
                input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(markdown=False)
                submit_button.visible = False
                num_images_slider.value = 30
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False)
            with gr.Column(scale=5, min_width=200):
                gr.Markdown("### Step 1: NCUT Embedding")
                output_gallery = make_output_images_section(markdown=False, button=False)
                submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary')
                add_rotate_flip_buttons(output_gallery)
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                    embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
                ] = make_parameters_section()

                false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
                no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
                
                submit_button.click(
                    partial(run_fn, n_ret=1),
                    inputs=[
                        input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
                        positive_prompt, negative_prompt,
                        false_placeholder, no_prompt, no_prompt, no_prompt,
                        affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal, 
                        embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                        perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
                    ],
                    outputs=[output_gallery, logging_text],
                )
                
            with gr.Column(scale=5, min_width=200):
                gr.Markdown("### Step 2a: Pick an Image")
                from gradio_image_prompter import ImagePrompter
                image_type_radio = gr.Radio(["Original", "NCUT"], label="Image Display Type", value="Original", elem_id="image_type_radio")
                with gr.Row():
                    image1_slider = gr.Slider(0, 100, step=1, label="Image#1 Index", value=0, elem_id="image1_slider", interactive=True)
                    image2_slider = gr.Slider(0, 100, step=1, label="Image#2 Index", value=1, elem_id="image2_slider", interactive=True)
                    image3_slider = gr.Slider(0, 100, step=1, label="Image#3 Index", value=2, elem_id="image3_slider", interactive=True)
                load_one_image_button = gr.Button("🔴 Load", elem_id="load_one_image_button", variant='primary')
                gr.Markdown("### Step 2b: Draw Points")
                gr.Markdown("""
                    <h5>
                    🖱️ Left Click: Foreground </br>
                    🖱️ Middle Click: Background </br></br>
                    Top Right Buttons: </br> 
                    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" 
                    stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" 
                    style="vertical-align: middle; height: 1em; width: 1em; display: inline;">
                    <polyline points="1 4 1 10 7 10"></polyline>
                    <path d="M3.51 15a9 9 0 1 0 2.13-9.36L1 10"></path>
                    </svg> :
                    Remove Last Point
                    </br>
                    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" 
                    style="vertical-align: middle; height: 1em; width: 1em; display: inline;">
                    <g fill="none">
                    <path fill="currentColor" d="m5.505 11.41l.53.53l-.53-.53ZM3 14.952h-.75H3ZM9.048 21v.75V21ZM11.41 5.505l-.53-.53l.53.53Zm1.831 12.34a.75.75 0 0 0 1.06-1.061l-1.06 1.06ZM7.216 9.697a.75.75 0 1 0-1.06 1.061l1.06-1.06Zm10.749 2.362l-5.905 5.905l1.06 1.06l5.905-5.904l-1.06-1.06Zm-11.93-.12l5.905-5.905l-1.06-1.06l-5.905 5.904l1.06 1.06Zm0 6.025c-.85-.85-1.433-1.436-1.812-1.933c-.367-.481-.473-.79-.473-1.08h-1.5c0 .749.312 1.375.78 1.99c.455.596 1.125 1.263 1.945 2.083l1.06-1.06Zm-1.06-7.086c-.82.82-1.49 1.488-1.945 2.084c-.468.614-.78 1.24-.78 1.99h1.5c0-.29.106-.6.473-1.08c.38-.498.962-1.083 1.812-1.933l-1.06-1.06Zm7.085 7.086c-.85.85-1.435 1.433-1.933 1.813c-.48.366-.79.472-1.08.472v1.5c.75 0 1.376-.312 1.99-.78c.596-.455 1.264-1.125 2.084-1.945l-1.06-1.06Zm-7.085 1.06c.82.82 1.487 1.49 2.084 1.945c.614.468 1.24.78 1.989.78v-1.5c-.29 0-.599-.106-1.08-.473c-.497-.38-1.083-.962-1.933-1.812l-1.06 1.06Zm12.99-12.99c.85.85 1.433 1.436 1.813 1.933c.366.481.472.79.472 1.08h1.5c0-.749-.312-1.375-.78-1.99c-.455-.596-1.125-1.263-1.945-2.083l-1.06 1.06Zm1.06 7.086c.82-.82 1.49-1.488 1.945-2.084c.468-.614.78-1.24.78-1.99h-1.5c0 .29-.106.6-.473 1.08c-.38.498-.962 1.083-1.812 1.933l1.06 1.06Zm0-8.146c-.82-.82-1.487-1.49-2.084-1.945c-.614-.468-1.24-.78-1.989-.78v1.5c.29 0 .599.106 1.08.473c.497.38 1.083.962 1.933 1.812l1.06-1.06Zm-7.085 1.06c.85-.85 1.435-1.433 1.933-1.812c.48-.367.79-.473 1.08-.473v-1.5c-.75 0-1.376.312-1.99.78c-.596.455-1.264 1.125-2.084 1.945l1.06 1.06Zm2.362 10.749L7.216 9.698l-1.06 1.061l7.085 7.085l1.06-1.06Z"></path>
                    <path stroke="currentColor" stroke-linecap="round" stroke-width="1.5" d="M9 21h12"></path></g>
                    </svg> :
                    Clear All Points
                    </br>
                    (Known issue: please manually clear the points after loading new image)
                    </h5>
                """)
                prompt_image1 = ImagePrompter(show_label=False, elem_id="prompt_image1", interactive=False)
                prompt_image2 = ImagePrompter(show_label=False, elem_id="prompt_image2", interactive=False)
                prompt_image3 = ImagePrompter(show_label=False, elem_id="prompt_image3", interactive=False)
                # def update_number_of_images(images):
                #     if images is None:
                #         return gr.update(max=0, value=0)
                #     return gr.update(max=len(images)-1, value=1)
                # input_gallery.change(update_number_of_images, inputs=input_gallery, outputs=image1_slider)
                
                def update_prompt_image(original_images, ncut_images, image_type, index):
                    if image_type == "Original":
                        images = original_images
                    else:
                        images = ncut_images
                    if images is None:
                        return 
                    total_len = len(images)
                    if total_len == 0:
                        return 
                    if index >= total_len:
                        index = total_len - 1
                                            
                    return ImagePrompter(value={'image': images[index][0], 'points': []}, interactive=True)
                    # return gr.Image(value=images[index][0], elem_id=f"prompt_image{randint}", interactive=True)
                load_one_image_button.click(update_prompt_image, inputs=[input_gallery, output_gallery, image_type_radio, image1_slider], outputs=[prompt_image1])
                load_one_image_button.click(update_prompt_image, inputs=[input_gallery, output_gallery, image_type_radio, image2_slider], outputs=[prompt_image2])
                load_one_image_button.click(update_prompt_image, inputs=[input_gallery, output_gallery, image_type_radio, image3_slider], outputs=[prompt_image3])
                
                image3_slider.visible = False
                prompt_image3.visible = False
                
                
                
            with gr.Column(scale=5, min_width=200):
                gr.Markdown("### Step 3: Segment and Crop")
                mask_gallery = gr.Gallery(value=[], label="Segmentation Masks", show_label=True, elem_id="mask_gallery", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, interactive=False)
                run_crop_button = gr.Button("🔴 RUN", elem_id="run_crop_button", variant='primary')
                add_download_button(mask_gallery, "mask")
                distance_threshold_slider = gr.Slider(0, 1, step=0.01, label="Mask Threshold (Foreground)", value=0.5, elem_id="distance_threshold", info="increase for smaller mask")
                negative_distance_threshold_slider = gr.Slider(0, 1, step=0.01, label="Mask Threshold (Background)", value=0.5, elem_id="distance_threshold", info="increase for smaller mask")
                overlay_image_checkbox = gr.Checkbox(label="Overlay Original Image", value=True, elem_id="overlay_image_checkbox")
                # filter_small_area_checkbox = gr.Checkbox(label="Noise Reduction", value=True, elem_id="filter_small_area_checkbox")
                distance_power_slider = gr.Slider(-3, 3, step=0.01, label="Distance Power", value=0.5, elem_id="distance_power", info="d = d^p", visible=False)
                crop_gallery = gr.Gallery(value=[], label="Cropped Images", show_label=True, elem_id="crop_gallery", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, interactive=False)
                add_download_button(crop_gallery, "cropped")
                crop_expand_slider = gr.Slider(1.0, 2.0, step=0.1, label="Crop bbox Expand Factor", value=1.0, elem_id="crop_expand", info="increase for larger crop", visible=True)
                area_threshold_slider = gr.Slider(0, 100, step=0.1, label="Area Threshold (%)", value=3, elem_id="area_threshold", info="for noise filtering (area of connected components)", visible=False)
                
                # logging_image = gr.Image(value=None, label="Logging Image", elem_id="logging_image", interactive=False)
                
                # prompt_image.change(lambda x: gr.update(value=x.get('image', None)), inputs=prompt_image, outputs=[logging_image])
                
                def relative_xy(prompts):
                    image = prompts['image']
                    points = np.asarray(prompts['points'])
                    if points.shape[0] == 0:
                        return [], []
                    is_point = points[:, 5] == 4.0
                    points = points[is_point]
                    is_positive = points[:, 2] == 1.0
                    is_negative = points[:, 2] == 0.0
                    xy = points[:, :2].tolist()
                    if isinstance(image, str):
                        image = Image.open(image)
                        image = np.array(image)
                    h, w = image.shape[:2]
                    new_xy = [(x/w, y/h) for x, y in xy]
                    # print(new_xy)
                    return new_xy, is_positive
                
                def xy_rgb(prompts, image_idx, ncut_images):
                    image = ncut_images[image_idx]
                    xy, is_positive = relative_xy(prompts)
                    rgbs = []
                    for i, (x, y) in enumerate(xy):
                        rgb = image.getpixel((int(x*image.width), int(y*image.height)))
                        rgbs.append((rgb, is_positive[i]))
                    return rgbs
                
                def run_crop(original_images, ncut_images, prompts1, prompts2, prompts3, image_idx1, image_idx2, image_idx3,
                            crop_expand, distance_threshold, distance_power, area_threshold, overlay_image, negative_distance_threshold):
                    ncut_images = [image[0] for image in ncut_images]
                    if len(ncut_images) == 0:
                        return []
                    if isinstance(ncut_images[0], str):
                        ncut_images = [Image.open(image) for image in ncut_images]
                    
                    rgbs = xy_rgb(prompts1, image_idx1, ncut_images) + \
                            xy_rgb(prompts2, image_idx2, ncut_images) + \
                            xy_rgb(prompts3, image_idx3, ncut_images)
                    # print(rgbs)
                    
                    
                    ncut_images = [np.array(image).astype(np.float32) for image in ncut_images]
                    ncut_pixels = [image.reshape(-1, 3) for image in ncut_images]
                    h, w = ncut_images[0].shape[:2]
                    ncut_pixels = torch.tensor(np.array(ncut_pixels).reshape(-1, 3)) / 255
                    # normalized_ncut_pixels = F.normalize(ncut_pixels, p=2, dim=-1)
                    
                    def to_mask(heatmap, threshold):
                        heatmap = 1 / (heatmap + 1e-6)
                        if heatmap.shape[0] > 10000:
                            random_idx = np.random.choice(heatmap.shape[0], 10000, replace=False)
                            vmin, vmax = heatmap[random_idx].quantile(0.01), heatmap[random_idx].quantile(0.99)
                        else:
                            vmin, vmax = heatmap.quantile(0.01), heatmap.quantile(0.99)
                        heatmap = (heatmap - vmin) / (vmax - vmin)
                        heatmap = heatmap.reshape(len(ncut_images), h, w)
                        mask = heatmap > threshold
                        return mask
                    
                    positive_masks, negative_masks = [], []
                    for rgb, is_positive in rgbs:
                        rgb = torch.tensor(rgb).float() / 255
                        distance = (ncut_pixels - rgb[None]).norm(dim=-1)
                        distance = distance.squeeze(-1)
                        if is_positive:
                            positive_masks.append(to_mask(distance, distance_threshold))
                        else:
                            negative_masks.append(to_mask(distance, negative_distance_threshold))
                    if len(positive_masks) == 0:
                        raise gr.Error("No prompt points. Please draw some points on the image.")
                    positive_masks = torch.stack(positive_masks)
                    positive_mask = positive_masks.any(dim=0)
                    if len(negative_masks) > 0:
                        negative_masks = torch.stack(negative_masks)
                        negative_mask = negative_masks.any(dim=0)
                        positive_mask = positive_mask & ~negative_mask
                    
                    
                    # convert to PIL
                    mask = positive_mask.cpu().numpy()
                    mask = mask.astype(np.uint8) * 255
                    mask = [Image.fromarray(mask[i]) for i in range(len(mask))]
                    
                    import cv2
                    def get_bboxes_and_clean_mask(pil_mask, min_area=500):
                        """
                        Args:
                        - pil_mask: A Pillow image of a binary mask with 255 for the object and 0 for the background.
                        - min_area: Minimum area for a connected component to be considered valid (default 500).
                        
                        Returns:
                        - bounding_boxes: List of bounding boxes for valid objects (x, y, width, height).
                        - cleaned_pil_mask: A Pillow image of the cleaned mask, with small components removed.
                        """
                        # Convert the Pillow image to a NumPy array
                        mask = np.array(pil_mask)

                        # Ensure the mask is binary (0 or 255)
                        mask = np.where(mask > 127, 255, 0).astype(np.uint8)

                        # Remove small noise using morphological operations (denoising)
                        kernel = np.ones((5, 5), np.uint8)
                        cleaned_mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)

                        # Find connected components in the cleaned mask
                        num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(cleaned_mask, connectivity=8)

                        # Initialize an empty mask to store the final cleaned mask
                        final_cleaned_mask = np.zeros_like(cleaned_mask)

                        # Collect bounding boxes for components that are larger than the threshold and update the cleaned mask
                        bounding_boxes = []
                        for i in range(1, num_labels):  # Skip label 0 (background)
                            x, y, w, h, area = stats[i]
                            if area >= min_area:
                                # Add the bounding box of the valid component
                                bounding_boxes.append((x, y, w, h))
                                # Keep the valid components in the final cleaned mask
                                final_cleaned_mask[labels == i] = 255

                        # Convert the final cleaned mask back to a Pillow image
                        cleaned_pil_mask = Image.fromarray(final_cleaned_mask)

                        return bounding_boxes, cleaned_pil_mask  
                    
                    bboxs, filtered_masks = zip(*[get_bboxes_and_clean_mask(_mask) for _mask in mask])

                    original_images = [image[0] for image in original_images]
                    if isinstance(original_images[0], str):
                        original_images = [Image.open(image) for image in original_images]
                    

                    # combine the masks, also draw the bounding boxes
                    combined_masks = []
                    for i_image in range(len(mask)):
                        noisy_mask = np.array(mask[i_image].convert("RGB"))
                        bbox = bboxs[i_image]
                        clean_mask = np.array(filtered_masks[i_image].convert("RGB"))
                        combined_mask = noisy_mask * 0.4 + clean_mask
                        combined_mask = np.clip(combined_mask, 0, 255).astype(np.uint8)
                        if overlay_image:
                            combined_mask[:, :, 0] = 0  # remove red channel
                            combined_mask[:, :, 1] = 0  # remove green channel
                            _image = original_images[i_image].convert("RGB").resize((combined_mask.shape[1], combined_mask.shape[0]))
                            _image = np.array(_image)
                            combined_mask = 0.5 * combined_mask + 0.5 * _image
                            combined_mask = np.clip(combined_mask, 0, 255).astype(np.uint8)
                        for x, y, w, h in bbox:
                            cv2.rectangle(combined_mask, (x-1, y-1), (x + w+2, y + h+2), (255, 0, 0), 2)
                        combined_mask = Image.fromarray(combined_mask)
                        combined_masks.append(combined_mask)
                    
                    def extend_the_mask(xywh, factor=1.5):
                        x, y, w, h = xywh
                        x -= w * (factor - 1) / 2
                        y -= h * (factor - 1) / 2
                        w *= factor
                        h *= factor
                        return x, y, w, h

                    def resize_the_mask(xywh, original_size, target_size):
                        x, y, w, h = xywh
                        x *= target_size[0] / original_size[0]
                        y *= target_size[1] / original_size[1]
                        w *= target_size[0] / original_size[0]
                        h *= target_size[1] / original_size[1]
                        x, y, w, h = int(x), int(y), int(w), int(h)
                        return x, y, w, h
                    
                    def crop_image(image, xywh, mask_h, mask_w, factor=1.0):
                        x, y, w, h = xywh
                        x, y, w, h = resize_the_mask((x, y, w, h), (mask_h, mask_w), image.size)
                        _x, _y, _w, _h = extend_the_mask((x, y, w, h), factor=factor)
                        crop = image.crop((_x, _y, _x + _w, _y + _h))
                        return crop
                    
                    mask_h, mask_w = filtered_masks[0].size
                    cropped_images = []
                    for _image, _bboxs in zip(original_images, bboxs):
                        for _bbox in _bboxs:
                            cropped_images.append(crop_image(_image, _bbox, mask_h, mask_w, factor=crop_expand))
                    
                    return combined_masks, cropped_images
                    
                run_crop_button.click(run_crop,
                    inputs=[input_gallery, output_gallery, prompt_image1, prompt_image2, prompt_image3, image1_slider, image2_slider, image3_slider,
                            crop_expand_slider, distance_threshold_slider, distance_power_slider, 
                            area_threshold_slider, overlay_image_checkbox, negative_distance_threshold_slider],
                    outputs=[mask_gallery, crop_gallery])
                
    
    with gr.Tab('📄About'):
        with gr.Column():
            gr.Markdown("**This demo is for Python package `ncut-pytorch`, please visit the [Documentation](https://ncut-pytorch.readthedocs.io/)**")
            gr.Markdown("**All the models and functions used for this demo are in the Python package `ncut-pytorch`**")
            gr.Markdown("---")
            gr.Markdown("---")
            gr.Markdown("**Normalized Cuts**, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.")
            gr.Markdown("*Normalized Cuts and Image Segmentation, Jianbo Shi and Jitendra Malik, 2000*")
            gr.Markdown("---")        
            gr.Markdown("**We have improved NCut, with some advanced features:**")
            gr.Markdown("- **Nyström** Normalized Cut, is a new approximation algorithm developed for large-scale graph cuts, a large-graph of million nodes can be processed in under 10s (cpu) or 2s (gpu).")
            gr.Markdown("- **spectral-tSNE** visualization, a new method to visualize the high-dimensional eigenvector space with 3D RGB cube. Color is aligned across images, color infers distance in representation.")
            gr.Markdown("*paper in prep, Yang 2024*")
            gr.Markdown("*AlignedCut: Visual Concepts Discovery on Brain-Guided Universal Feature Space, Huzheng Yang, James Gee\*, and Jianbo Shi\*, 2024*")
            gr.Markdown("---")        
            gr.Markdown("---")        
            gr.Markdown('<p style="text-align: center;">We thank HuggingFace for hosting this demo.</p>')        
        
        # unlock the hidden tab
        with gr.Row():
            with gr.Column(scale=5):
                gr.Markdown("")
            with gr.Column(scale=5):
                hidden_button = gr.Checkbox(label="🤗", value=False, elem_id="unlock_button", visible=True, interactive=True)
            with gr.Column(scale=5):
                gr.Markdown("")
            
        n_smiles = gr.State(0)
        unlock_value = 6

        def update_smile(n_smiles):
            n_smiles = n_smiles + 1
            n_smiles = unlock_value if n_smiles > unlock_value else n_smiles
            if n_smiles == unlock_value - 2:
                gr.Info("click one more time to unlock", 2)
            if n_smiles == unlock_value:
                label = "🔓 unlocked"
                return n_smiles, gr.update(label=label, value=True, interactive=False)
            label = ["😊"] * n_smiles
            label = "".join(label)
            return n_smiles, gr.update(label=label, value=False)
        
        def unlock_tabs_with_info(n_smiles):
            if n_smiles == unlock_value:
                gr.Info("🔓 unlocked tabs", 2)
                return gr.update(visible=True)
            return gr.update()

        def unlock_tabs(n_smiles):
            if n_smiles == unlock_value:
                return gr.update(visible=True)
            return gr.update()
        
        hidden_button.change(update_smile, [n_smiles], [n_smiles, hidden_button])
        hidden_button.change(unlock_tabs_with_info, n_smiles, tab_alignedcut_advanced)
        hidden_button.change(unlock_tabs, n_smiles, tab_model_aligned_advanced)
        hidden_button.change(unlock_tabs, n_smiles, tab_recursivecut_advanced)
        hidden_button.change(unlock_tabs, n_smiles, tab_compare_models_advanced)
        hidden_button.change(unlock_tabs, n_smiles, tab_directed_ncut)
                
    # with gr.Row():
        # with gr.Column():
            # gr.Markdown("##### This demo is for `ncut-pytorch`, [Documentation](https://ncut-pytorch.readthedocs.io/) ")
        # with gr.Column():
            # gr.Markdown("###### Running out of GPU Quota? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn")
    with gr.Row():
        gr.Markdown("**This demo is for Python package `ncut-pytorch`, [Documentation](https://ncut-pytorch.readthedocs.io/)**")

# for local development
if os.path.exists("/hf_token.txt"):
    os.environ["HF_ACCESS_TOKEN"] = open("/hf_token.txt").read().strip()

    
if DOWNLOAD_ALL_MODELS_DATASETS:
    from ncut_pytorch.backbone import download_all_models
    # t1 = threading.Thread(target=download_all_models).start()
    # t1.join()
    # t3 = threading.Thread(target=download_all_datasets).start()
    # t3.join()
    download_all_models()
    download_all_datasets()
    
    from ncut_pytorch.backbone_text import download_all_models
    # t2 = threading.Thread(target=download_all_models).start()
    # t2.join()
    download_all_models()

demo.launch(share=True)



# # %%
# # debug
# # change working directory to "/"
# os.chdir("/")
# images = [(Image.open(image), None) for image in default_images]
# ret = run_fn(images, num_eig=30)
# # %%

# %%