Spaces:
Running
on
Zero
Running
on
Zero
fix SD norm
Browse files
app.py
CHANGED
@@ -461,15 +461,18 @@ def extract_video_frames(video_path, max_frames=100):
|
|
461 |
# return as list of PIL images
|
462 |
return [(Image.fromarray(frames[i]), "") for i in range(frames.shape[0])]
|
463 |
|
464 |
-
def transform_image(image, resolution=(1024, 1024)):
|
465 |
image = image.convert('RGB').resize(resolution, Image.LANCZOS)
|
466 |
# Convert to torch tensor
|
467 |
image = torch.tensor(np.array(image).transpose(2, 0, 1)).float()
|
468 |
image = image / 255
|
469 |
# Normalize
|
470 |
-
|
471 |
-
|
472 |
-
|
|
|
|
|
|
|
473 |
return image
|
474 |
|
475 |
def plot_one_image_36_grid(original_image, tsne_rgb_images):
|
@@ -617,7 +620,8 @@ def run_fn(
|
|
617 |
else:
|
618 |
resolution = RES_DICT[model_name]
|
619 |
images = [tup[0] for tup in images]
|
620 |
-
|
|
|
621 |
images = torch.stack(images)
|
622 |
|
623 |
|
@@ -1401,9 +1405,9 @@ with demo:
|
|
1401 |
with gr.Column():
|
1402 |
gr.Markdown("###### Running out of GPU? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn")
|
1403 |
|
1404 |
-
#
|
1405 |
-
|
1406 |
-
|
1407 |
|
1408 |
if DOWNLOAD_ALL_MODELS_DATASETS:
|
1409 |
from ncut_pytorch.backbone import download_all_models
|
|
|
461 |
# return as list of PIL images
|
462 |
return [(Image.fromarray(frames[i]), "") for i in range(frames.shape[0])]
|
463 |
|
464 |
+
def transform_image(image, resolution=(1024, 1024), stablediffusion=False):
|
465 |
image = image.convert('RGB').resize(resolution, Image.LANCZOS)
|
466 |
# Convert to torch tensor
|
467 |
image = torch.tensor(np.array(image).transpose(2, 0, 1)).float()
|
468 |
image = image / 255
|
469 |
# Normalize
|
470 |
+
if not stablediffusion:
|
471 |
+
mean = [0.485, 0.456, 0.406]
|
472 |
+
std = [0.229, 0.224, 0.225]
|
473 |
+
image = (image - torch.tensor(mean).view(3, 1, 1)) / torch.tensor(std).view(3, 1, 1)
|
474 |
+
if stablediffusion:
|
475 |
+
image = image * 2 - 1
|
476 |
return image
|
477 |
|
478 |
def plot_one_image_36_grid(original_image, tsne_rgb_images):
|
|
|
620 |
else:
|
621 |
resolution = RES_DICT[model_name]
|
622 |
images = [tup[0] for tup in images]
|
623 |
+
stablediffusion = True if "Diffusion" in model_name else False
|
624 |
+
images = [transform_image(image, resolution=resolution, stablediffusion=stablediffusion) for image in images]
|
625 |
images = torch.stack(images)
|
626 |
|
627 |
|
|
|
1405 |
with gr.Column():
|
1406 |
gr.Markdown("###### Running out of GPU? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn")
|
1407 |
|
1408 |
+
# for local development
|
1409 |
+
if os.path.exists("/hf_token.txt"):
|
1410 |
+
os.environ["HF_ACCESS_TOKEN"] = open("/hf_token.txt").read().strip()
|
1411 |
|
1412 |
if DOWNLOAD_ALL_MODELS_DATASETS:
|
1413 |
from ncut_pytorch.backbone import download_all_models
|