Spaces:
Running
on
Zero
Running
on
Zero
File size: 209,064 Bytes
86da6bf 4fa11ec 3af1fcf 5afcac2 4fa6c93 4e7b524 b74468d 4fa6c93 6dceac4 e9899b2 3af1fcf 0269da3 b74468d 4e7b524 b74468d 4e7b524 6dceac4 645651e 5c0c30a 6dceac4 645651e 976cf1e 6dceac4 86da6bf 68b0288 2b98806 7a2c457 2b98806 07462e7 6573567 2b98806 be4c20b 47ba996 b50d4dc 2b98806 b806945 eedb910 b806945 b50d4dc b806945 90aff07 b806945 2fbda21 48bc263 b806945 2fbda21 b806945 48bc263 b806945 48bc263 b806945 7a2c457 b806945 2b98806 c320745 47ba996 68b0288 c320745 22848f4 5ca0c5b 22848f4 3d40e53 5afcac2 1075d8a 3d40e53 edc0dc6 86da6bf 7311cdd 86da6bf 07462e7 3d40e53 2b98806 68b0288 2b98806 86da6bf 5ca0c5b 7a2c457 22848f4 2b98806 edc0dc6 07462e7 5afcac2 07462e7 3d40e53 86da6bf 47ba996 86da6bf 7311cdd 5ca0c5b 2b98806 5dac5bc 4a168d1 5dac5bc 2b98806 5afcac2 9e43ce3 51d0dee 9e43ce3 5afcac2 47ba996 88c1ef1 2b98806 5ca0c5b e85b6ae 5ca0c5b 9e43ce3 bce60e0 9e43ce3 9cd819b bce60e0 9cd819b 5ca0c5b f1aaf40 94eb803 5ca0c5b 4e7b524 0269da3 319a391 4d21d31 319a391 4d21d31 319a391 0269da3 3d40e53 4e7b524 734e8a4 319a391 734e8a4 753a147 319a391 753a147 3d40e53 4e7b524 3d40e53 4d21d31 3d40e53 4e7b524 3d40e53 a3d5c5a 4e7b524 3d40e53 4d75059 3d40e53 4e7b524 3d40e53 d90f66b 3d40e53 4e7b524 3d40e53 2ade645 3d40e53 0269da3 3d40e53 734e8a4 4e7b524 a3d5c5a 0269da3 4e7b524 0269da3 4e7b524 a3d5c5a 3d40e53 4e7b524 0269da3 4e7b524 0269da3 e9899b2 0269da3 e9899b2 4e7b524 0269da3 a3d5c5a 753a147 4e7b524 0269da3 319a391 0269da3 319a391 4e7b524 edc0dc6 7a2c457 2b98806 4e7b524 2b98806 a48bd1b 4e7b524 2b98806 4e7b524 47ba996 2b98806 c320745 22848f4 88c1ef1 5ca0c5b 044c4c8 5ca0c5b 4fa11ec 753a147 2b98806 2ade645 5dac5bc 3d40e53 edc0dc6 94eb803 b74468d 94eb803 e9af887 68b0288 2b98806 86da6bf 2b98806 68b0288 7a2c457 68b0288 7a2c457 07462e7 94eb803 4fa11ec 94eb803 5dac5bc edc0dc6 6def0f2 07462e7 3d40e53 5ca0c5b 2ade645 6706a30 5ca0c5b 3d40e53 5ca0c5b 3d40e53 5ca0c5b 6706a30 5ca0c5b 47ba996 5ca0c5b 22848f4 3d40e53 5ca0c5b 2ade645 80937a3 3d40e53 80937a3 7a2c457 2ade645 b1e189a 2ade645 319a391 2ade645 88c1ef1 3d40e53 88c1ef1 6dceac4 88c1ef1 5ca0c5b 88c1ef1 88feeb8 88c1ef1 88feeb8 28c6e21 1efccb8 88c1ef1 47ba996 88c1ef1 22848f4 3d40e53 88c1ef1 06d24e2 5ca0c5b 4e7b524 753a147 5dac5bc 5afcac2 5dac5bc 5afcac2 5dac5bc 5afcac2 5dac5bc 753a147 5ca0c5b 3d40e53 5ca0c5b 6bb0b0a 5ca0c5b 753a147 4d21d31 753a147 734e8a4 319a391 0269da3 753a147 4d21d31 753a147 734e8a4 753a147 2ade645 319a391 753a147 4e7b524 2b98806 86da6bf 4d21d31 5afcac2 6706a30 5afcac2 6706a30 5afcac2 4e7b524 5afcac2 4a168d1 5afcac2 8c6fc00 6dceac4 c4b0a8e 86da6bf 8c6fc00 c4b0a8e 86da6bf d245991 86da6bf 1efccb8 86da6bf 6dceac4 86da6bf 1efccb8 68b0288 5ca0c5b 04cb121 7a2c457 04cb121 7a2c457 4e7b524 22610e0 4e7b524 b74468d e9899b2 b74468d e9899b2 b74468d 94eb803 5e7bae6 94eb803 b7c5735 94eb803 4fa11ec 560d63b 8c6fc00 4e7b524 8c6fc00 560d63b 4fa11ec 4e7b524 8c6fc00 22848f4 4e7b524 47ba996 4e7b524 8c6fc00 4e7b524 8c6fc00 22848f4 88c1ef1 5ca0c5b 044c4c8 5dac5bc 4e7b524 753a147 734e8a4 5dac5bc 5afcac2 8c6fc00 4a168d1 3d40e53 8c6fc00 5c1d3a1 4e7b524 8c6fc00 3d40e53 5ca0c5b 22848f4 86da6bf 7a2c457 94eb803 da6c997 94eb803 7a2c457 04cb121 7a2c457 2b5e956 3d40e53 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 935e622 d8f9231 94eb803 0eae266 94eb803 2b5e956 560d63b 4fa11ec 560d63b 4fa11ec 8c6fc00 47ba996 8c6fc00 86da6bf 22848f4 88c1ef1 5ca0c5b 044c4c8 5ca0c5b 4fa11ec 4e7b524 753a147 734e8a4 5dac5bc 5afcac2 8c6fc00 0269da3 1efccb8 41699e0 e2011a5 c43f5e7 41699e0 0269da3 41699e0 27a746c 0269da3 41699e0 7a2c457 41699e0 7a2c457 d245991 41699e0 e2011a5 c43f5e7 0269da3 5ff5029 8a63e65 68b0288 0269da3 5dac5bc 0269da3 5ca0c5b 9e43ce3 50f4ed7 e85b6ae 6bb0b0a 9e43ce3 5ca0c5b 88c1ef1 48bc263 0eae266 48bc263 0eae266 48bc263 5afcac2 4d21d31 48bc263 4fa6c93 3af1fcf 4fa6c93 3af1fcf 4fa6c93 319a391 4fa6c93 3af1fcf 4fa6c93 9e43ce3 48bc263 9e43ce3 48bc263 0269da3 5afcac2 48bc263 9e43ce3 48bc263 b806945 8d1d2de b806945 22848f4 b806945 b74468d b806945 b74468d 4fa6c93 48bc263 4fa6c93 ab1b7ae 4fa6c93 b74468d 8bdcc28 4fa6c93 8bdcc28 4fa6c93 8bdcc28 4fa6c93 9e43ce3 b806945 7a2c457 b806945 7a2c457 b806945 7a2c457 6573567 7a2c457 48bc263 4fa6c93 7a2c457 4fa6c93 80937a3 47ba996 80937a3 47ba996 80937a3 47ba996 80937a3 47ba996 80937a3 47ba996 0269da3 47ba996 3af1fcf 47ba996 3af1fcf 47ba996 4d21d31 56ff490 4d21d31 88c1ef1 5afcac2 7311cdd 044c4c8 e9af887 c9c808c 4fa11ec 9913a19 c9c808c 4fa11ec ed7561b 88c1ef1 5c67556 2b5e956 044c4c8 2b5e956 976cf1e 2b5e956 4fa11ec f7efa0a 4fa11ec 7a2c457 f7efa0a f5de82f 5c67556 7a2c457 f7efa0a f5de82f 5c67556 560d63b 4fa11ec 560d63b 5afcac2 7311cdd 5c67556 88c1ef1 22848f4 5afcac2 22848f4 5afcac2 339b928 22848f4 1838429 6573567 88c1ef1 976cf1e 6573567 88c1ef1 22848f4 47ba996 88c1ef1 22848f4 2b98806 753a147 07db945 00dc973 753a147 07db945 5afcac2 5ca0c5b 88c1ef1 4fa6c93 3d40e53 5e7bae6 88c1ef1 0269da3 88c1ef1 22848f4 47ba996 88c1ef1 22848f4 88c1ef1 4fa11ec 2b5e956 88c1ef1 753a147 88c1ef1 560d63b 4fa11ec 22848f4 47ba996 22848f4 88c1ef1 4e7b524 38b8a09 88c1ef1 2ade645 753a147 3af1fcf 48bc263 fe0a89a 753a147 3af1fcf 753a147 3af1fcf c95b250 3af1fcf 753a147 48bc263 753a147 38b8a09 753a147 734e8a4 753a147 16703cb e85b6ae a29b195 88c1ef1 507aec2 88c1ef1 a29b195 88c1ef1 4fa6c93 88c1ef1 22848f4 47ba996 88c1ef1 22848f4 88c1ef1 22848f4 88c1ef1 4fa11ec 88c1ef1 560d63b 4fa11ec 22848f4 47ba996 22848f4 88c1ef1 9237b56 88c1ef1 5ca0c5b eedb910 5ca0c5b 812ad0d ee5bd57 4fa6c93 ee5bd57 812ad0d 56ff490 0269da3 812ad0d 56ff490 0269da3 812ad0d 56ff490 0269da3 5ca0c5b 6dceac4 5ca0c5b 369bb85 044c4c8 ee5bd57 5ca0c5b 22848f4 47ba996 5ca0c5b 22848f4 5ca0c5b 044c4c8 5ca0c5b 4fa11ec 5ca0c5b 4e7b524 5ca0c5b 80937a3 560d63b 4fa11ec 22848f4 47ba996 22848f4 5ca0c5b 044c4c8 5ca0c5b 9237b56 5ca0c5b 2ade645 ee5bd57 3af1fcf ee5bd57 fe0a89a 2ade645 0269da3 3af1fcf a75bd09 3af1fcf c95b250 3af1fcf 2ade645 0269da3 3af1fcf a75bd09 3af1fcf c95b250 3af1fcf 2ade645 0269da3 3af1fcf a75bd09 3af1fcf c95b250 3af1fcf ee5bd57 2ade645 369bb85 2ade645 ee5bd57 2ade645 5ca0c5b e85b6ae 5ca0c5b 9e43ce3 5ca0c5b e85b6ae 5ca0c5b 22848f4 47ba996 5ca0c5b 22848f4 5ca0c5b 9e43ce3 5ca0c5b 4fa11ec 5ca0c5b 6bb0b0a 560d63b 4fa11ec 22848f4 47ba996 22848f4 5ca0c5b 9237b56 5ca0c5b e85b6ae 7645f3c 7311cdd 7645f3c 7311cdd 4fa11ec a39ec0a 4fa11ec ed7561b 4fa11ec ed7561b 4fa11ec ed7561b 4fa11ec 4fa6c93 4fa11ec 22848f4 47ba996 4fa11ec 22848f4 4fa11ec 4e7b524 4fa11ec 22848f4 47ba996 22848f4 4fa11ec 62031d2 4fa6c93 62031d2 b74468d 62031d2 b74468d 62031d2 b74468d 62031d2 22848f4 47ba996 62031d2 22848f4 80937a3 62031d2 b74468d 62031d2 4fa6c93 5e7bae6 22848f4 5e7bae6 22848f4 5e7bae6 2ade645 5e7bae6 80937a3 56ff490 0269da3 3af1fcf 80937a3 56ff490 0269da3 3af1fcf 80937a3 56ff490 0269da3 3af1fcf 80937a3 5e7bae6 3af1fcf 5e7bae6 80937a3 5e7bae6 22848f4 5e7bae6 22848f4 80937a3 5e7bae6 4fa6c93 80937a3 4fa11ec 62031d2 734e8a4 62031d2 80937a3 560d63b 4fa11ec 22848f4 47ba996 22848f4 80937a3 62031d2 80937a3 62031d2 5e7bae6 9e43ce3 7a2c457 d73ecb9 ed7561b 9e43ce3 0269da3 7a2c457 22848f4 47ba996 7a2c457 22848f4 7a2c457 4fa11ec 7a2c457 560d63b 4fa11ec 22848f4 47ba996 22848f4 7a2c457 e85b6ae 4fa6c93 e85b6ae 7a2c457 e85b6ae ee5bd57 d73ecb9 7a2c457 d73ecb9 7a2c457 d73ecb9 ee5bd57 d73ecb9 e85b6ae 9e43ce3 d73ecb9 e85b6ae d73ecb9 94eb803 b7c5735 0269da3 b7c5735 0269da3 3af1fcf 0269da3 b7c5735 3af1fcf c95b250 3af1fcf b7c5735 0269da3 b7c5735 0269da3 b7c5735 3af1fcf b7c5735 ee5bd57 0269da3 b7c5735 ee5bd57 b7c5735 0269da3 b7c5735 0269da3 5dac5bc 15d48ba 0269da3 5dac5bc 5afcac2 5dac5bc 1838429 5dac5bc 0269da3 5dac5bc 4d21d31 ae9accd 4d21d31 5dac5bc 4d21d31 03a488b 6c4afb4 4d21d31 6c4afb4 03a488b 4d21d31 896eab2 4d21d31 896eab2 4d21d31 6375d85 03a488b 4d21d31 6375d85 4d21d31 6375d85 d0f0917 6375d85 d0f0917 4d21d31 d0f0917 4d21d31 03a488b 6375d85 03a488b 6375d85 03a488b 4d21d31 03a488b 4d21d31 0eae266 4d21d31 0eae266 4d21d31 03a488b 4d21d31 03a488b 4d21d31 30e4b09 4d21d31 30e4b09 4d21d31 03a488b 3101a51 03a488b 4d21d31 03a488b 6375d85 4d21d31 62031d2 5afcac2 83bc547 753a147 84b700a 753a147 84b700a 8f2d7ad 753a147 935e622 753a147 2ade645 b7c5735 15d48ba 5afcac2 753a147 84b700a bee43e5 84b700a d73ecb9 04cb121 d8f9231 50f4ed7 645651e b583aba e2b7cb4 7311cdd 50f4ed7 e2b7cb4 2b5e956 4e7b524 c9c808c 5afcac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 |
# Author: Huzheng Yang
# %%
import copy
from datetime import datetime
import math
import pickle
from functools import partial
from io import BytesIO
import json
import os
import uuid
import zipfile
import multiprocessing as mp
from einops import rearrange
from matplotlib import pyplot as plt
import matplotlib
USE_HUGGINGFACE_ZEROGPU = os.getenv("USE_HUGGINGFACE_ZEROGPU", "False").lower() in ["true", "1", "yes"]
DOWNLOAD_ALL_MODELS_DATASETS = os.getenv("DOWNLOAD_ALL_MODELS_DATASETS", "False").lower() in ["true", "1", "yes"]
if USE_HUGGINGFACE_ZEROGPU: # huggingface ZeroGPU, dynamic GPU allocation
try:
import spaces
except:
USE_HUGGINGFACE_ZEROGPU = False
if USE_HUGGINGFACE_ZEROGPU:
BATCH_SIZE = 1
else: # run on local machine
BATCH_SIZE = 1
import gradio as gr
import torch
import torch.nn.functional as F
from PIL import Image
import numpy as np
import time
import threading
from ncut_pytorch.backbone import extract_features, load_model
from ncut_pytorch.backbone import MODEL_DICT, LAYER_DICT, RES_DICT
from ncut_pytorch import NCUT
from ncut_pytorch import eigenvector_to_rgb
DATASETS = {
'Common': [
('mrm8488/ImageNet1K-val', 1000),
('UCSC-VLAA/Recap-COCO-30K', None),
('nateraw/pascal-voc-2012', None),
('johnowhitaker/imagenette2-320', 10),
('Multimodal-Fatima/CUB_train', 200),
('saragag/FlBirds', 7),
('microsoft/cats_vs_dogs', None),
('Robotkid2696/food_classification', 20),
('JapanDegitalMaterial/Places_in_Japan', None),
],
'Ego': [
('EgoThink/EgoThink', None),
],
'Face': [
('nielsr/CelebA-faces', None),
('huggan/anime-faces', None),
],
'Pose': [
('sayakpaul/poses-controlnet-dataset', None),
('razdab/sign_pose_M', None),
('Marqo/deepfashion-multimodal', None),
('Fiacre/small-animal-poses-controlnet-dataset', None),
('junjuice0/vtuber-tachi-e', None),
],
'Hand': [
('trashsock/hands-images', 8),
('dduka/guitar-chords-v3', None),
],
'Satellite': [
('arakesh/deepglobe-2448x2448', None),
('tanganke/eurosat', 10),
('wangyi111/EuroSAT-SAR', None),
('efoley/sar_tile_512', None),
],
'Medical': [
('Mahadih534/Chest_CT-Scan_images-Dataset', None),
('TrainingDataPro/chest-x-rays', None),
('hongrui/mimic_chest_xray_v_1', None),
('sartajbhuvaji/Brain-Tumor-Classification', 4),
('Falah/Alzheimer_MRI', 4),
('Leonardo6/path-vqa', None),
('Itsunori/path-vqa_jap', None),
('ruby-jrl/isic-2024-2', None),
('VRJBro/lung_cancer_dataset', 5),
('keremberke/blood-cell-object-detection', None)
],
'Miscs': [
('yashvoladoddi37/kanjienglish', None),
('Borismile/Anime-dataset', None),
('jainr3/diffusiondb-pixelart', None),
('jlbaker361/dcgan-eval-creative_gan_256_256', None),
('Francesco/csgo-videogame', None),
('Francesco/apex-videogame', None),
('huggan/pokemon', None),
('huggan/few-shot-universe', None),
('huggan/flowers-102-categories', None),
('huggan/inat_butterflies_top10k', None),
]
}
CENTER_CROP_DATASETS = ["razdab/sign_pose_M"]
from datasets import load_dataset
def download_all_datasets():
for cat in DATASETS.keys():
for tup in DATASETS[cat]:
name = tup[0]
print(f"Downloading {name}")
try:
load_dataset(name, trust_remote_code=True)
except Exception as e:
print(f"Error downloading {name}: {e}")
def compute_ncut(
features,
num_eig=100,
num_sample_ncut=10000,
affinity_focal_gamma=0.3,
knn_ncut=10,
knn_tsne=10,
embedding_method="UMAP",
embedding_metric='euclidean',
num_sample_tsne=300,
perplexity=150,
n_neighbors=150,
min_dist=0.1,
sampling_method="QuickFPS",
metric="cosine",
indirect_connection=True,
make_orthogonal=False,
progess_start=0.4,
only_eigvecs=False,
):
progress = gr.Progress()
logging_str = ""
num_nodes = np.prod(features.shape[:-1])
if num_nodes / 2 < num_eig:
# raise gr.Error("Number of eigenvectors should be less than half the number of nodes.")
gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.")
num_eig = num_nodes // 2 - 1
logging_str += f"Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.\n"
start = time.time()
progress(progess_start+0.0, desc="NCut")
eigvecs, eigvals = NCUT(
num_eig=num_eig,
num_sample=num_sample_ncut,
device="cuda" if torch.cuda.is_available() else "cpu",
affinity_focal_gamma=affinity_focal_gamma,
knn=knn_ncut,
sample_method=sampling_method,
distance=metric,
normalize_features=False,
indirect_connection=indirect_connection,
make_orthogonal=make_orthogonal,
).fit_transform(features.reshape(-1, features.shape[-1]))
# print(f"NCUT time: {time.time() - start:.2f}s")
logging_str += f"NCUT time: {time.time() - start:.2f}s\n"
if only_eigvecs:
eigvecs = eigvecs.to("cpu").reshape(features.shape[:-1] + (num_eig,))
return None, logging_str, eigvecs
start = time.time()
progress(progess_start+0.01, desc="spectral-tSNE")
_, rgb = eigenvector_to_rgb(
eigvecs,
method=embedding_method,
metric=embedding_metric,
num_sample=num_sample_tsne,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_distance=min_dist,
knn=knn_tsne,
device="cuda" if torch.cuda.is_available() else "cpu",
)
logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n"
rgb = rgb.reshape(features.shape[:-1] + (3,))
return rgb, logging_str, eigvecs
def compute_ncut_directed(
features_1,
features_2,
num_eig=100,
num_sample_ncut=10000,
affinity_focal_gamma=0.3,
knn_ncut=10,
knn_tsne=10,
embedding_method="UMAP",
embedding_metric='euclidean',
num_sample_tsne=300,
perplexity=150,
n_neighbors=150,
min_dist=0.1,
sampling_method="QuickFPS",
metric="cosine",
indirect_connection=False,
make_orthogonal=False,
make_symmetric=False,
progess_start=0.4,
):
# print("Using directed_ncut")
# print("features_1.shape", features_1.shape)
# print("features_2.shape", features_2.shape)
from directed_ncut import nystrom_ncut
progress = gr.Progress()
logging_str = ""
num_nodes = np.prod(features_1.shape[:-2])
if num_nodes / 2 < num_eig:
# raise gr.Error("Number of eigenvectors should be less than half the number of nodes.")
gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.")
num_eig = num_nodes // 2 - 1
logging_str += f"Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.\n"
start = time.time()
progress(progess_start+0.0, desc="NCut")
n_features = features_1.shape[-2]
_features_1 = rearrange(features_1, "b h w d c -> (b h w) (d c)")
_features_2 = rearrange(features_2, "b h w d c -> (b h w) (d c)")
eigvecs, eigvals, _ = nystrom_ncut(
_features_1,
features_B=_features_2,
num_eig=num_eig,
num_sample=num_sample_ncut,
device="cuda" if torch.cuda.is_available() else "cpu",
affinity_focal_gamma=affinity_focal_gamma,
knn=knn_ncut,
sample_method=sampling_method,
distance=metric,
normalize_features=False,
indirect_connection=indirect_connection,
make_orthogonal=make_orthogonal,
make_symmetric=make_symmetric,
n_features=n_features,
)
# print(f"NCUT time: {time.time() - start:.2f}s")
logging_str += f"NCUT time: {time.time() - start:.2f}s\n"
start = time.time()
progress(progess_start+0.01, desc="spectral-tSNE")
_, rgb = eigenvector_to_rgb(
eigvecs,
method=embedding_method,
metric=embedding_metric,
num_sample=num_sample_tsne,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_distance=min_dist,
knn=knn_tsne,
device="cuda" if torch.cuda.is_available() else "cpu",
)
logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n"
rgb = rgb.reshape(features_1.shape[:3] + (3,))
return rgb, logging_str, eigvecs
def dont_use_too_much_green(image_rgb):
# make sure the foval 40% of the image is red leading
x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7)
y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7)
sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2))
sorted_indices = sum_values.argsort(descending=True)
image_rgb = image_rgb[:, :, :, sorted_indices]
return image_rgb
def to_pil_images(images, target_size=512, resize=True, force_size=False):
size = images[0].shape[1]
multiplier = target_size // size
res = int(size * multiplier)
if force_size:
res = target_size
pil_images = [
Image.fromarray((image * 255).cpu().numpy().astype(np.uint8))
for image in images
]
if resize:
pil_images = [
image.resize((res, res), Image.Resampling.NEAREST)
for image in pil_images
]
return pil_images
def pil_images_to_video(images, output_path, fps=5):
# from pil images to numpy
images = [np.array(image) for image in images]
# print("Saving video to", output_path)
import cv2
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
height, width, _ = images[0].shape
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
for image in images:
out.write(cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
out.release()
return output_path
# save up to 100 videos in disk
class VideoCache:
def __init__(self, max_videos=100):
self.max_videos = max_videos
self.videos = {}
def add_video(self, video_path):
if len(self.videos) >= self.max_videos:
pop_path = self.videos.popitem()[0]
try:
os.remove(pop_path)
except:
pass
self.videos[video_path] = video_path
def get_video(self, video_path):
return self.videos.get(video_path, None)
video_cache = VideoCache()
def get_random_path(length=10):
import random
import string
name = ''.join(random.choices(string.ascii_lowercase + string.digits, k=length))
path = f'/tmp/{name}.mp4'
return path
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/guitar_ego.jpg', './images/image_5.jpg']
default_outputs = ['./images/image-1.webp', './images/image-2.webp', './images/image-3.webp', './images/image-4.webp', './images/image-5.webp']
# default_outputs_independent = ['./images/image-6.webp', './images/image-7.webp', './images/image-8.webp', './images/image-9.webp', './images/image-10.webp']
default_outputs_independent = []
downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg']
downscaled_outputs = default_outputs
example_items = downscaled_images[:3] + downscaled_outputs[:3]
def run_alignedthreemodelattnnodes(images, model, batch_size=16):
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
if use_cuda:
model = model.to(device)
chunked_idxs = torch.split(torch.arange(images.shape[0]), batch_size)
outputs = []
for idxs in chunked_idxs:
inp = images[idxs]
if use_cuda:
inp = inp.to(device)
out = model(inp)
# normalize before save
out = F.normalize(out, dim=-1)
outputs.append(out.cpu().float())
outputs = torch.cat(outputs, dim=0)
return outputs
def _reds_colormap(image):
# normed_data = image / image.max() # Normalize to [0, 1]
normed_data = image
colormap = matplotlib.colormaps['inferno'] # Get the Reds colormap
colored_image = colormap(normed_data) # Apply colormap
return (colored_image[..., :3] * 255).astype(np.uint8) # Convert to RGB
# heatmap images
def apply_reds_colormap(images, size):
# for i_image in range(images.shape[0]):
# images[i_image] -= images[i_image].min()
# images[i_image] /= images[i_image].max()
# normed_data = [_reds_colormap(images[i]) for i in range(images.shape[0])]
# normed_data = np.stack(normed_data)
normed_data = _reds_colormap(images)
normed_data = torch.tensor(normed_data).float()
normed_data = rearrange(normed_data, "b h w c -> b c h w")
normed_data = torch.nn.functional.interpolate(normed_data, size=size, mode="nearest")
normed_data = rearrange(normed_data, "b c h w -> b h w c")
normed_data = normed_data.cpu().numpy().astype(np.uint8)
return normed_data
# Blend heatmap with the original image
def blend_image_with_heatmap(image, heatmap, opacity1=0.5, opacity2=0.5):
blended = (1 - opacity1) * image + opacity2 * heatmap
return blended.astype(np.uint8)
def segment_fg_bg(images):
images = F.interpolate(images, (224, 224), mode="bilinear")
# model = load_alignedthreemodel()
model = load_model("CLIP(ViT-B-16/openai)")
from ncut_pytorch.backbone import resample_position_embeddings
pos_embed = model.model.visual.positional_embedding
pos_embed = resample_position_embeddings(pos_embed, 14, 14)
model.model.visual.positional_embedding = torch.nn.Parameter(pos_embed)
batch_size = 4
chunk_idxs = torch.split(torch.arange(images.shape[0]), batch_size)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
means = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
stds = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
fg_acts, bg_acts = [], []
for chunk_idx in chunk_idxs:
with torch.no_grad():
input_images = images[chunk_idx].to(device)
# transform the input images
input_images = (input_images - means) / stds
# output = model(input_images)[:, 5]
output = model(input_images)['attn'][6] # [B, H=14, W=14, C]
fg_act = output[:, 6, 6].mean(0)
bg_act = output[:, 0, 0].mean(0)
fg_acts.append(fg_act)
bg_acts.append(bg_act)
fg_act = torch.stack(fg_acts, dim=0).mean(0)
bg_act = torch.stack(bg_acts, dim=0).mean(0)
fg_act = F.normalize(fg_act, dim=-1)
bg_act = F.normalize(bg_act, dim=-1)
# ref_image = default_images[0]
# image = Image.open(ref_image).convert("RGB").resize((224, 224), Image.Resampling.BILINEAR)
# image = torch.tensor(np.array(image)).permute(2, 0, 1).float().to(device)
# image = (image / 255.0 - means) / stds
# output = model(image)['attn'][6][0]
# # print(output.shape)
# # bg on the center
# fg_act = output[5, 5]
# # bg on the bottom left
# bg_act = output[0, 0]
# fg_act = F.normalize(fg_act, dim=-1)
# bg_act = F.normalize(bg_act, dim=-1)
# print(images.mean(), images.std())
fg_act, bg_act = fg_act.to(device), bg_act.to(device)
chunk_idxs = torch.split(torch.arange(images.shape[0]), batch_size)
heatmap_fgs, heatmap_bgs = [], []
for chunk_idx in chunk_idxs:
with torch.no_grad():
input_images = images[chunk_idx].to(device)
# transform the input images
input_images = (input_images - means) / stds
# output = model(input_images)[:, 5]
output = model(input_images)['attn'][6]
output = F.normalize(output, dim=-1)
heatmap_fg = output @ fg_act[:, None] # [B, H, W, 1]
heatmap_bg = output @ bg_act[:, None] # [B, H, W, 1]
heatmap_fgs.append(heatmap_fg.cpu())
heatmap_bgs.append(heatmap_bg.cpu())
heatmap_fg = torch.cat(heatmap_fgs, dim=0)
heatmap_bg = torch.cat(heatmap_bgs, dim=0)
return heatmap_fg, heatmap_bg
def make_cluster_plot(eigvecs, images, h=64, w=64, progess_start=0.6, advanced=False, clusters=50, eig_idx=None, title='cluster'):
if clusters == 0:
return [], []
progress = gr.Progress()
progress(progess_start, desc="Finding Clusters by FPS")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eigvecs = eigvecs.to(device)
from ncut_pytorch.ncut_pytorch import farthest_point_sampling
magnitude = torch.norm(eigvecs, dim=-1)
# gr.Info("Finding Clusters by FPS, no magnitude filtering")
top_p_idx = torch.arange(eigvecs.shape[0])
if eig_idx is not None:
top_p_idx = eig_idx
# gr.Info("Finding Clusters by FPS, with magnitude filtering")
# p = 0.8
# top_p_idx = magnitude.argsort(descending=True)[:int(p * magnitude.shape[0])]
ret_magnitude = magnitude.reshape(-1, h, w)
num_samples = 300
if num_samples > top_p_idx.shape[0]:
num_samples = top_p_idx.shape[0]
fps_idx = farthest_point_sampling(eigvecs[top_p_idx], num_samples)
fps_idx = top_p_idx[fps_idx]
# fps round 2 on the heatmap
left = eigvecs[fps_idx, :].clone()
right = eigvecs.clone()
left = F.normalize(left, dim=-1)
right = F.normalize(right, dim=-1)
heatmap = left @ right.T
heatmap = F.normalize(heatmap, dim=-1) # [300, N_pixel] PCA-> [300, 8]
num_samples = clusters + 20 # 100/120
if num_samples > fps_idx.shape[0]:
num_samples = fps_idx.shape[0]
r2_fps_idx = farthest_point_sampling(heatmap, num_samples)
fps_idx = fps_idx[r2_fps_idx]
# downsample to 256x256
images = F.interpolate(images, (256, 256), mode="bilinear")
images = images.cpu().numpy()
images = images.transpose(0, 2, 3, 1)
images = images * 255
images = images.astype(np.uint8)
# sort the fps_idx by the mean of the heatmap
fps_heatmaps = {}
sort_values = []
top3_image_idx = {}
top10_image_idx = {}
for _, idx in enumerate(fps_idx):
heatmap = F.cosine_similarity(eigvecs, eigvecs[idx][None], dim=-1)
# def top_percentile(tensor, p=0.8, max_size=10000):
# tensor = tensor.clone().flatten()
# if tensor.shape[0] > max_size:
# tensor = tensor[torch.randperm(tensor.shape[0])[:max_size]]
# return tensor.quantile(p)
# top_p = top_percentile(heatmap, p=0.5)
top_p = 0.9
heatmap = heatmap.reshape(-1, h, w)
mask = (heatmap > top_p).float()
# take top 3 masks only
mask_sort_values = mask.mean((1, 2))
_sort_value2 = (heatmap > 0.1).float().mean((1, 2)) * 0.1
mask_sort_values += _sort_value2
mask_sort_idx = torch.argsort(mask_sort_values, descending=True)
mask = mask[mask_sort_idx[:3]]
sort_values.append(mask.mean().item())
# fps_heatmaps[idx.item()] = heatmap.cpu()
fps_heatmaps[idx.item()] = heatmap[mask_sort_idx[:6]].cpu()
top3_image_idx[idx.item()] = mask_sort_idx[:3]
top10_image_idx[idx.item()] = mask_sort_idx[:6]
# do the sorting
_sort_idx = torch.tensor(sort_values).argsort(descending=True)
fps_idx = fps_idx[_sort_idx]
# reverse the fps_idx
# fps_idx = fps_idx.flip(0)
# discard the big clusters
# gr.Info("Discarding the biggest 10 clusters")
# fps_idx = fps_idx[10:]
# gr.Info("Not discarding the biggest 10 clusters")
# gr.Info("Discarding the smallest 30 out of 80 sampled clusters")
if not advanced:
# shuffle the fps_idx
fps_idx = fps_idx[torch.randperm(fps_idx.shape[0])]
def plot_cluster_images(fps_idx_chunk, chunk_idx):
fig, axs = plt.subplots(3, 5, figsize=(15, 9)) if not advanced else plt.subplots(6, 5, figsize=(15, 18))
for ax in axs.flatten():
ax.axis("off")
for j, idx in enumerate(fps_idx_chunk):
heatmap = fps_heatmaps[idx.item()]
size = (images.shape[1], images.shape[2])
heatmap = apply_reds_colormap(heatmap, size)
image_idxs = top3_image_idx[idx.item()] if not advanced else top10_image_idx[idx.item()]
for i, image_idx in enumerate(image_idxs):
_heatmap = blend_image_with_heatmap(images[image_idx], heatmap[i])
axs[i, j].imshow(_heatmap)
if i == 0:
axs[i, j].set_title(f"{title} {chunk_idx * 5 + j + 1}", fontsize=24)
plt.tight_layout(h_pad=0.5, w_pad=0.3)
filename = f"{datetime.now():%Y%m%d%H%M%S%f}_{uuid.uuid4().hex}"
tmp_path = f"/tmp/{filename}.png"
plt.savefig(tmp_path, bbox_inches='tight', dpi=72)
img = Image.open(tmp_path).convert("RGB")
os.remove(tmp_path)
plt.close()
return img
fig_images = []
num_plots = clusters // 5
plot_step_float = (1.0 - progess_start) / num_plots
fps_idx_chunks = [fps_idx[i*5:(i+1)*5] for i in range(num_plots)]
# with mp.Pool(processes=mp.cpu_count()) as pool:
# results = [pool.apply_async(plot_cluster_images, args=(chunk, i)) for i, chunk in enumerate(fps_idx_chunks)]
# for i, result in enumerate(results):
# progress(progess_start + i * plot_step_float, desc=f"Plotted {title}")
# fig_images.append(result.get())
for i, chunk in enumerate(fps_idx_chunks):
progress(progess_start + i * plot_step_float, desc=f"Plotted {title}")
fig_images.append(plot_cluster_images(chunk, i))
return fig_images, ret_magnitude
def make_cluster_plot_advanced(eigvecs, images, h=64, w=64):
heatmap_fg, heatmap_bg = segment_fg_bg(images.clone())
heatmap_bg = rearrange(heatmap_bg, 'b h w c -> b c h w')
heatmap_fg = rearrange(heatmap_fg, 'b h w c -> b c h w')
heatmap_fg = F.interpolate(heatmap_fg, (h, w), mode="bilinear")
heatmap_bg = F.interpolate(heatmap_bg, (h, w), mode="bilinear")
heatmap_fg = heatmap_fg.flatten()
heatmap_bg = heatmap_bg.flatten()
fg_minus_bg = heatmap_fg - heatmap_bg
fg_mask = fg_minus_bg > fg_minus_bg.quantile(0.8)
bg_mask = fg_minus_bg < fg_minus_bg.quantile(0.2)
# fg_mask = heatmap_fg > heatmap_fg.quantile(0.8)
# bg_mask = heatmap_bg > heatmap_bg.quantile(0.8)
other_mask = ~(fg_mask | bg_mask)
fg_idx = torch.arange(heatmap_fg.shape[0])[fg_mask]
bg_idx = torch.arange(heatmap_bg.shape[0])[bg_mask]
other_idx = torch.arange(heatmap_fg.shape[0])[other_mask]
fg_images, _ = make_cluster_plot(eigvecs, images, h=h, w=w, advanced=True, clusters=100, eig_idx=fg_idx, title="fg")
bg_images, _ = make_cluster_plot(eigvecs, images, h=h, w=w, advanced=True, clusters=20, eig_idx=bg_idx, title="bg")
other_images, _ = make_cluster_plot(eigvecs, images, h=h, w=w, advanced=True, clusters=0, eig_idx=other_idx, title="other")
cluster_images = fg_images + bg_images + other_images
magitude = torch.norm(eigvecs, dim=-1)
magitude = magitude.reshape(-1, h, w)
# magitude = fg_minus_bg.reshape(-1, h, w) #TODO
return cluster_images, magitude
def ncut_run(
model,
images,
model_name="DiNO(dino_vitb8_448)",
layer=10,
num_eig=100,
node_type="block",
affinity_focal_gamma=0.5,
num_sample_ncut=10000,
knn_ncut=10,
embedding_method="tsne_3d",
embedding_metric='euclidean',
num_sample_tsne=1000,
knn_tsne=10,
perplexity=500,
n_neighbors=500,
min_dist=0.1,
sampling_method="QuickFPS",
ncut_metric="cosine",
indirect_connection=True,
make_orthogonal=False,
old_school_ncut=False,
recursion=False,
recursion_l2_n_eigs=50,
recursion_l3_n_eigs=20,
recursion_metric="euclidean",
recursion_l1_gamma=0.5,
recursion_l2_gamma=0.5,
recursion_l3_gamma=0.5,
video_output=False,
is_lisa=False,
lisa_prompt1="",
lisa_prompt2="",
lisa_prompt3="",
plot_clusters=False,
alignedcut_eig_norm_plot=False,
**kwargs,
):
advanced = kwargs.get("advanced", False)
directed = kwargs.get("directed", False)
progress = gr.Progress()
progress(0.2, desc="Feature Extraction")
logging_str = ""
if "AlignedThreeModelAttnNodes" == model_name:
# dirty patch for the alignedcut paper
resolution = (224, 224)
else:
resolution = RES_DICT[model_name]
logging_str += f"Resolution: {resolution}\n"
if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
# raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.")
logging_str += f"Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.\n"
perplexity = num_sample_tsne - 1
n_neighbors = num_sample_tsne - 1
if torch.cuda.is_available():
torch.cuda.empty_cache()
node_type = node_type.split(":")[0].strip()
start = time.time()
if "AlignedThreeModelAttnNodes" == model_name:
# dirty patch for the alignedcut paper
features = run_alignedthreemodelattnnodes(images, model, batch_size=BATCH_SIZE)
elif is_lisa == True:
# dirty patch for the LISA model
features = []
with torch.no_grad():
model = model.cuda()
images = images.cuda()
lisa_prompts = [lisa_prompt1, lisa_prompt2, lisa_prompt3]
for prompt in lisa_prompts:
import bleach
prompt = bleach.clean(prompt)
prompt = prompt.strip()
# print(prompt)
# # copy the sting to a new string
# copy_s = copy.copy(prompt)
feature = model(images, input_str=prompt)[node_type][0]
feature = F.normalize(feature, dim=-1)
features.append(feature.cpu().float())
features = torch.stack(features)
else:
features = extract_features(
images, model, node_type=node_type, layer=layer-1, batch_size=BATCH_SIZE
)
if directed:
node_type2 = kwargs.get("node_type2", None)
features_B = extract_features(
images, model, node_type=node_type2, layer=layer-1, batch_size=BATCH_SIZE
)
# print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
del model
progress(0.4, desc="NCut")
if recursion:
rgbs = []
all_eigvecs = []
recursion_gammas = [recursion_l1_gamma, recursion_l2_gamma, recursion_l3_gamma]
inp = features
progress_start = 0.4
for i, n_eigs in enumerate([num_eig, recursion_l2_n_eigs, recursion_l3_n_eigs]):
logging_str += f"Recursion #{i+1}\n"
progress_start += + 0.1 * i
rgb, _logging_str, eigvecs = compute_ncut(
inp,
num_eig=n_eigs,
num_sample_ncut=num_sample_ncut,
affinity_focal_gamma=recursion_gammas[i],
knn_ncut=knn_ncut,
knn_tsne=knn_tsne,
num_sample_tsne=num_sample_tsne,
embedding_method=embedding_method,
embedding_metric=embedding_metric,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_dist=min_dist,
sampling_method=sampling_method,
metric=ncut_metric if i == 0 else recursion_metric,
indirect_connection=indirect_connection,
make_orthogonal=make_orthogonal,
progess_start=progress_start,
)
logging_str += _logging_str
all_eigvecs.append(eigvecs.cpu().clone())
if "AlignedThreeModelAttnNodes" == model_name:
# dirty patch for the alignedcut paper
start = time.time()
progress(progress_start + 0.09, desc=f"Plotting Recursion {i+1}")
pil_images = []
for i_image in range(rgb.shape[0]):
_im = plot_one_image_36_grid(images[i_image], rgb[i_image])
pil_images.append(_im)
rgbs.append(pil_images)
logging_str += f"plot time: {time.time() - start:.2f}s\n"
else:
rgb = dont_use_too_much_green(rgb)
rgbs.append(to_pil_images(rgb))
inp = eigvecs.reshape(*features.shape[:-1], -1)
if recursion_metric == "cosine":
inp = F.normalize(inp, dim=-1)
if not advanced:
return rgbs[0], rgbs[1], rgbs[2], logging_str
if "AlignedThreeModelAttnNodes" == model_name:
return rgbs[0], rgbs[1], rgbs[2], logging_str
if advanced:
cluster_plots, norm_plots = [], []
for i in range(3):
eigvecs = all_eigvecs[i]
# add norm plot, cluster plot
start = time.time()
progress_start = 0.6
progress(progress_start, desc=f"Plotting Clusters Recursion #{i+1}")
h, w = features.shape[1], features.shape[2]
if torch.cuda.is_available():
images = images.cuda()
_images = reverse_transform_image(images, stablediffusion="stable" in model_name.lower())
cluster_images, eig_magnitude = make_cluster_plot_advanced(eigvecs, _images, h=h, w=w)
logging_str += f"Recursion #{i+1} plot time: {time.time() - start:.2f}s\n"
norm_images = []
vmin, vmax = eig_magnitude.min(), eig_magnitude.max()
eig_magnitude = (eig_magnitude - vmin) / (vmax - vmin)
eig_magnitude = eig_magnitude.cpu().numpy()
colormap = matplotlib.colormaps['Reds']
for i_image in range(eig_magnitude.shape[0]):
norm_image = colormap(eig_magnitude[i_image])
norm_images.append(torch.tensor(norm_image[..., :3]))
norm_images = to_pil_images(norm_images)
logging_str += f"Recursion #{i+1} Eigenvector Magnitude: [{vmin:.2f}, {vmax:.2f}]\n"
gr.Info(f"Recursion #{i+1} Eigenvector Magnitude:</br> Min: {vmin:.2f}, Max: {vmax:.2f}", duration=10)
cluster_plots.append(cluster_images)
norm_plots.append(norm_images)
return *rgbs, *norm_plots, *cluster_plots, logging_str
if old_school_ncut: # individual images
logging_str += "Running NCut for each image independently\n"
rgb = []
progress_start = 0.4
step_float = 0.6 / features.shape[0]
for i_image in range(features.shape[0]):
logging_str += f"Image #{i_image+1}\n"
feature = features[i_image]
_rgb, _logging_str, _ = compute_ncut(
feature[None],
num_eig=num_eig,
num_sample_ncut=30000,
affinity_focal_gamma=affinity_focal_gamma,
knn_ncut=1,
knn_tsne=10,
num_sample_tsne=300,
embedding_method=embedding_method,
embedding_metric=embedding_metric,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_dist=min_dist,
sampling_method=sampling_method,
metric=ncut_metric,
indirect_connection=indirect_connection,
make_orthogonal=make_orthogonal,
progess_start=progress_start+step_float*i_image,
)
logging_str += _logging_str
rgb.append(_rgb[0])
return to_pil_images(rgb), logging_str
# ailgnedcut
if not directed:
only_eigvecs = kwargs.get("only_eigvecs", False)
rgb, _logging_str, eigvecs = compute_ncut(
features,
num_eig=num_eig,
num_sample_ncut=num_sample_ncut,
affinity_focal_gamma=affinity_focal_gamma,
knn_ncut=knn_ncut,
knn_tsne=knn_tsne,
num_sample_tsne=num_sample_tsne,
embedding_method=embedding_method,
embedding_metric=embedding_metric,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_dist=min_dist,
sampling_method=sampling_method,
indirect_connection=indirect_connection,
make_orthogonal=make_orthogonal,
metric=ncut_metric,
only_eigvecs=only_eigvecs,
)
if only_eigvecs:
return eigvecs, logging_str
if directed:
head_index_text = kwargs.get("head_index_text", None)
n_heads = features.shape[-2] # (batch, h, w, n_heads, d)
if head_index_text == 'all':
head_idx = torch.arange(n_heads)
else:
_idxs = head_index_text.split(",")
head_idx = torch.tensor([int(idx) for idx in _idxs])
features_A = features[:, :, :, head_idx, :]
features_B = features_B[:, :, :, head_idx, :]
rgb, _logging_str, eigvecs = compute_ncut_directed(
features_A,
features_B,
num_eig=num_eig,
num_sample_ncut=num_sample_ncut,
affinity_focal_gamma=affinity_focal_gamma,
knn_ncut=knn_ncut,
knn_tsne=knn_tsne,
num_sample_tsne=num_sample_tsne,
embedding_method=embedding_method,
embedding_metric=embedding_metric,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_dist=min_dist,
sampling_method=sampling_method,
indirect_connection=False,
make_orthogonal=make_orthogonal,
metric=ncut_metric,
make_symmetric=kwargs.get("make_symmetric", None),
)
logging_str += _logging_str
if "AlignedThreeModelAttnNodes" == model_name:
# dirty patch for the alignedcut paper
start = time.time()
progress(0.6, desc="Plotting")
pil_images = []
for i_image in range(rgb.shape[0]):
_im = plot_one_image_36_grid(images[i_image], rgb[i_image])
pil_images.append(_im)
logging_str += f"plot time: {time.time() - start:.2f}s\n"
return pil_images, logging_str
if is_lisa == True:
# dirty patch for the LISA model
galleries = []
for i_prompt in range(len(lisa_prompts)):
_rgb = rgb[i_prompt]
galleries.append(to_pil_images(_rgb))
return *galleries, logging_str
rgb = dont_use_too_much_green(rgb)
if video_output:
progress(0.8, desc="Saving Video")
video_path = get_random_path()
video_cache.add_video(video_path)
pil_images_to_video(to_pil_images(rgb), video_path, fps=5)
return video_path, logging_str
cluster_images = None
if plot_clusters and kwargs.get("n_ret", 1) > 1:
start = time.time()
progress_start = 0.6
progress(progress_start, desc="Plotting Clusters")
h, w = features.shape[1], features.shape[2]
if torch.cuda.is_available():
images = images.cuda()
_images = reverse_transform_image(images, stablediffusion="stable" in model_name.lower())
advanced = kwargs.get("advanced", False)
if advanced:
cluster_images, eig_magnitude = make_cluster_plot_advanced(eigvecs, _images, h=h, w=w)
else:
cluster_images, eig_magnitude = make_cluster_plot(eigvecs, _images, h=h, w=w, progess_start=progress_start, advanced=False)
logging_str += f"plot time: {time.time() - start:.2f}s\n"
norm_images = None
if alignedcut_eig_norm_plot and kwargs.get("n_ret", 1) > 1:
norm_images = []
# eig_magnitude = torch.clamp(eig_magnitude, 0, 1)
vmin, vmax = eig_magnitude.min(), eig_magnitude.max()
eig_magnitude = (eig_magnitude - vmin) / (vmax - vmin)
eig_magnitude = eig_magnitude.cpu().numpy()
colormap = matplotlib.colormaps['Reds']
for i_image in range(eig_magnitude.shape[0]):
norm_image = colormap(eig_magnitude[i_image])
# norm_image = (norm_image[..., :3] * 255).astype(np.uint8)
# norm_images.append(Image.fromarray(norm_image))
norm_images.append(torch.tensor(norm_image[..., :3]))
norm_images = to_pil_images(norm_images)
logging_str += "Eigenvector Magnitude\n"
logging_str += f"Min: {vmin:.2f}, Max: {vmax:.2f}\n"
gr.Info(f"Eigenvector Magnitude:</br> Min: {vmin:.2f}, Max: {vmax:.2f}", duration=10)
return to_pil_images(rgb), cluster_images, norm_images, logging_str
def _ncut_run(*args, **kwargs):
n_ret = kwargs.get("n_ret", 1)
# try:
# if torch.cuda.is_available():
# torch.cuda.empty_cache()
# ret = ncut_run(*args, **kwargs)
# if torch.cuda.is_available():
# torch.cuda.empty_cache()
# ret = list(ret)[:n_ret] + [ret[-1]]
# return ret
# except Exception as e:
# gr.Error(str(e))
# if torch.cuda.is_available():
# torch.cuda.empty_cache()
# return *(None for _ in range(n_ret)), "Error: " + str(e)
ret = ncut_run(*args, **kwargs)
ret = list(ret)[:n_ret] + [ret[-1]]
return ret
if USE_HUGGINGFACE_ZEROGPU:
@spaces.GPU(duration=30)
def quick_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
@spaces.GPU(duration=45)
def long_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
@spaces.GPU(duration=60)
def longer_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
@spaces.GPU(duration=120)
def super_duper_long_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def cpu_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
if not USE_HUGGINGFACE_ZEROGPU:
def quick_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def long_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def longer_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def super_duper_long_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def cpu_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def extract_video_frames(video_path, max_frames=100):
from decord import VideoReader
vr = VideoReader(video_path)
num_frames = len(vr)
if num_frames > max_frames:
gr.Warning(f"Video has {num_frames} frames. Only using {max_frames} frames. Evenly spaced.")
frame_idx = np.linspace(0, num_frames - 1, max_frames, dtype=int).tolist()
else:
frame_idx = list(range(num_frames))
frames = vr.get_batch(frame_idx).asnumpy()
# return as list of PIL images
return [(Image.fromarray(frames[i]), "") for i in range(frames.shape[0])]
def transform_image(image, resolution=(1024, 1024), stablediffusion=False):
image = image.convert('RGB').resize(resolution, Image.LANCZOS)
# Convert to torch tensor
image = torch.tensor(np.array(image).transpose(2, 0, 1)).float()
image = image / 255
# Normalize
if not stablediffusion:
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
image = (image - torch.tensor(mean).view(3, 1, 1)) / torch.tensor(std).view(3, 1, 1)
if stablediffusion:
image = image * 2 - 1
return image
def reverse_transform_image(image, stablediffusion=False):
if stablediffusion:
image = (image + 1) / 2
else:
mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1).to(image.device)
std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1).to(image.device)
image = image * std + mean
image = torch.clamp(image, 0, 1)
return image
def plot_one_image_36_grid(original_image, tsne_rgb_images):
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
original_image = original_image * torch.tensor(std).view(3, 1, 1) + torch.tensor(mean).view(3, 1, 1)
original_image = torch.clamp(original_image, 0, 1)
fig = plt.figure(figsize=(20, 4))
grid = plt.GridSpec(3, 14, hspace=0.1, wspace=0.1)
ax1 = fig.add_subplot(grid[0:2, 0:2])
img = original_image.cpu().float().numpy().transpose(1, 2, 0)
def convert_and_pad_image(np_array, pad_size=20):
"""
Converts a NumPy array of shape (height, width, 3) to a PNG image
and pads the right and bottom sides with a transparent background.
Args:
np_array (numpy.ndarray): Input NumPy array of shape (height, width, 3)
pad_size (int, optional): Number of pixels to pad on the right and bottom sides. Default is 20.
Returns:
PIL.Image: Padded PNG image with transparent background
"""
# Convert NumPy array to PIL Image
img = Image.fromarray(np_array)
# Get the original size
width, height = img.size
# Create a new image with padding and transparent background
new_width = width + pad_size
new_height = height + pad_size
padded_img = Image.new('RGBA', (new_width, new_height), color=(255, 255, 255, 0))
# Paste the original image onto the padded image
padded_img.paste(img, (0, 0))
return padded_img
img = convert_and_pad_image((img*255).astype(np.uint8))
ax1.imshow(img)
ax1.axis('off')
model_names = ['CLIP', 'DINO', 'MAE']
for i_model, model_name in enumerate(model_names):
for i_layer in range(12):
ax = fig.add_subplot(grid[i_model, i_layer+2])
ax.imshow(tsne_rgb_images[i_layer+12*i_model].cpu().float().numpy())
ax.axis('off')
if i_model == 0:
ax.set_title(f'Layer{i_layer}', fontsize=16)
if i_layer == 0:
ax.text(-0.1, 0.5, model_name, va="center", ha="center", fontsize=16, transform=ax.transAxes, rotation=90,)
plt.tight_layout()
filename = uuid.uuid4()
filename = f"/tmp/{filename}.png"
plt.savefig(filename, bbox_inches='tight', pad_inches=0, dpi=100)
img = Image.open(filename)
img = img.convert("RGB")
img = copy.deepcopy(img)
os.remove(filename)
plt.close()
return img
def load_alignedthreemodel():
import sys
if "alignedthreeattn" not in sys.path:
for _ in range(3):
os.system("git clone https://huggingface.co/huzey/alignedthreeattn >> /dev/null 2>&1")
os.system("git -C alignedthreeattn pull >> /dev/null 2>&1")
# add to path
sys.path.append("alignedthreeattn")
from alignedthreeattn.alignedthreeattn_model import ThreeAttnNodes
align_weights = torch.load("alignedthreeattn/align_weights.pth")
model = ThreeAttnNodes(align_weights)
return model
try:
# pre-load the alignedthree model in case it fails to load
load_alignedthreemodel()
except Exception as e:
pass
promptable_diffusion_models = ["Diffusion(stabilityai/stable-diffusion-2)", "Diffusion(CompVis/stable-diffusion-v1-4)"]
promptable_segmentation_models = ["LISA(xinlai/LISA-7B-v1)"]
def run_fn(
images,
model_name="DiNO(dino_vitb8_448)",
layer=10,
num_eig=100,
node_type="block",
positive_prompt="",
negative_prompt="",
is_lisa=False,
lisa_prompt1="",
lisa_prompt2="",
lisa_prompt3="",
affinity_focal_gamma=0.5,
num_sample_ncut=10000,
knn_ncut=10,
ncut_indirect_connection=True,
ncut_make_orthogonal=False,
embedding_method="tsne_3d",
embedding_metric='euclidean',
num_sample_tsne=300,
knn_tsne=10,
perplexity=150,
n_neighbors=150,
min_dist=0.1,
sampling_method="QuickFPS",
ncut_metric="cosine",
old_school_ncut=False,
max_frames=100,
recursion=False,
recursion_l2_n_eigs=50,
recursion_l3_n_eigs=20,
recursion_metric="euclidean",
recursion_l1_gamma=0.5,
recursion_l2_gamma=0.5,
recursion_l3_gamma=0.5,
node_type2="k",
head_index_text='all',
make_symmetric=False,
n_ret=1,
plot_clusters=False,
alignedcut_eig_norm_plot=False,
advanced=False,
directed=False,
only_eigvecs=False,
):
# print(node_type2, head_index_text, make_symmetric)
progress=gr.Progress()
progress(0, desc="Starting")
if images is None:
gr.Warning("No images selected.")
return *(None for _ in range(n_ret)), "No images selected."
progress(0.05, desc="Processing Images")
video_output = False
if isinstance(images, str):
images = extract_video_frames(images, max_frames=max_frames)
video_output = True
if sampling_method == "QuickFPS":
sampling_method = "farthest"
# resize the images before acquiring GPU
if "AlignedThreeModelAttnNodes" == model_name:
# dirty patch for the alignedcut paper
resolution = (224, 224)
else:
resolution = RES_DICT[model_name]
images = [tup[0] for tup in images]
stablediffusion = True if "Diffusion" in model_name else False
images = [transform_image(image, resolution=resolution, stablediffusion=stablediffusion) for image in images]
images = torch.stack(images)
progress(0.1, desc="Downloading Model")
if is_lisa:
import subprocess
import sys
import importlib
gr.Warning("LISA model is not compatible with the current version of transformers. Please contact the LISA and Llava author for update.")
gr.Warning("This is a dirty patch for the LISA model. switch to the old version of transformers.")
gr.Warning("Not garanteed to work.")
# LISA and Llava is not compatible with the current version of transformers
# please contact the author for update
# this is a dirty patch for the LISA model
# pre-import the SD3 pipeline
from diffusers import StableDiffusion3Pipeline
# unloading the current transformers
for module in list(sys.modules.keys()):
if "transformers" in module:
del sys.modules[module]
def install_transformers_version(version, target_dir):
"""Install a specific version of transformers to a target directory."""
if not os.path.exists(target_dir):
os.makedirs(target_dir)
# Use subprocess to run the pip command
# subprocess.check_call([sys.executable, '-m', 'pip', 'install', f'transformers=={version}', '-t', target_dir])
os.system(f"{sys.executable} -m pip install transformers=={version} -t {target_dir} >> /dev/null 2>&1")
target_dir = '/tmp/lisa_transformers_v433'
if not os.path.exists(target_dir):
install_transformers_version('4.33.0', target_dir)
# Add the new version path to sys.path
sys.path.insert(0, target_dir)
transformers = importlib.import_module("transformers")
if not is_lisa:
import subprocess
import sys
import importlib
# remove the LISA model from the sys.path
if "/tmp/lisa_transformers_v433" in sys.path:
sys.path.remove("/tmp/lisa_transformers_v433")
transformers = importlib.import_module("transformers")
if "AlignedThreeModelAttnNodes" == model_name:
# dirty patch for the alignedcut paper
model = load_alignedthreemodel()
else:
model = load_model(model_name)
if directed: # save qkv for directed, need more memory
model.enable_save_qkv()
if "stable" in model_name.lower() and "diffusion" in model_name.lower():
model.timestep = layer
layer = 1
if model_name in promptable_diffusion_models:
model.positive_prompt = positive_prompt
model.negative_prompt = negative_prompt
kwargs = {
"model_name": model_name,
"layer": layer,
"num_eig": num_eig,
"node_type": node_type,
"affinity_focal_gamma": affinity_focal_gamma,
"num_sample_ncut": num_sample_ncut,
"knn_ncut": knn_ncut,
"embedding_method": embedding_method,
"embedding_metric": embedding_metric,
"num_sample_tsne": num_sample_tsne,
"knn_tsne": knn_tsne,
"perplexity": perplexity,
"n_neighbors": n_neighbors,
"min_dist": min_dist,
"sampling_method": sampling_method,
"ncut_metric": ncut_metric,
"indirect_connection": ncut_indirect_connection,
"make_orthogonal": ncut_make_orthogonal,
"old_school_ncut": old_school_ncut,
"recursion": recursion,
"recursion_l2_n_eigs": recursion_l2_n_eigs,
"recursion_l3_n_eigs": recursion_l3_n_eigs,
"recursion_metric": recursion_metric,
"recursion_l1_gamma": recursion_l1_gamma,
"recursion_l2_gamma": recursion_l2_gamma,
"recursion_l3_gamma": recursion_l3_gamma,
"video_output": video_output,
"lisa_prompt1": lisa_prompt1,
"lisa_prompt2": lisa_prompt2,
"lisa_prompt3": lisa_prompt3,
"is_lisa": is_lisa,
"n_ret": n_ret,
"plot_clusters": plot_clusters,
"alignedcut_eig_norm_plot": alignedcut_eig_norm_plot,
"advanced": advanced,
"directed": directed,
"node_type2": node_type2,
"head_index_text": head_index_text,
"make_symmetric": make_symmetric,
"only_eigvecs": only_eigvecs,
}
# print(kwargs)
try:
# try to aquiare GPU, can fail if the user is out of GPU quota
if old_school_ncut:
return super_duper_long_run(model, images, **kwargs)
if is_lisa:
return super_duper_long_run(model, images, **kwargs)
num_images = len(images)
if num_images >= 100:
return super_duper_long_run(model, images, **kwargs)
if 'diffusion' in model_name.lower():
return super_duper_long_run(model, images, **kwargs)
if recursion:
return longer_run(model, images, **kwargs)
if num_images >= 50:
return longer_run(model, images, **kwargs)
if old_school_ncut:
return longer_run(model, images, **kwargs)
if num_images >= 10:
return long_run(model, images, **kwargs)
if embedding_method == "UMAP":
if perplexity >= 250 or num_sample_tsne >= 500:
return longer_run(model, images, **kwargs)
return long_run(model, images, **kwargs)
if embedding_method == "t-SNE":
if perplexity >= 250 or num_sample_tsne >= 500:
return long_run(model, images, **kwargs)
return quick_run(model, images, **kwargs)
return quick_run(model, images, **kwargs)
except gr.Error as e:
# I assume this is a GPU quota error
info1 = 'Running out of HuggingFace GPU Quota?</br> Please try <a style="white-space: nowrap;text-underline-offset: 2px;color: var(--body-text-color)" href="https://ncut-pytorch.readthedocs.io/en/latest/demo/">Demo hosted at UPenn</a></br>'
info2 = 'Or try use the Python package that powers this app: <a style="white-space: nowrap;text-underline-offset: 2px;color: var(--body-text-color)" href="https://ncut-pytorch.readthedocs.io/en/latest/">ncut-pytorch</a>'
info = info1 + info2
message = "<b>HuggingFace: </b></br>" + e.message + "</br></br>---------</br>" + "<b>`ncut-pytorch` Developer: </b></br>" + info
raise gr.Error(message, duration=0)
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
import pytorch_lightning as pl
# Custom Dataset
class TwoTensorDataset(Dataset):
def __init__(self, A, B):
self.A = A
self.B = B
def __len__(self):
return len(self.A)
def __getitem__(self, idx):
return self.A[idx], self.B[idx]
# MLP model
class MLP(pl.LightningModule):
def __init__(self, num_layer=3, width=512, lr=3e-4, fitting_steps=10000, seg_loss_lambda=1.0):
super().__init__()
layers = [nn.Linear(3, width), nn.GELU()]
for _ in range(num_layer - 1):
layers.append(nn.Linear(width, width))
layers.append(nn.GELU())
layers.append(nn.Linear(width, 3))
self.layers = nn.Sequential(*layers)
self.mse_loss = nn.MSELoss()
self.lr = lr
self.fitting_steps = fitting_steps
self.seg_loss_lambda = seg_loss_lambda
self.progress = gr.Progress()
def forward(self, x):
return self.layers(x)
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.forward(x)
loss = self.mse_loss(y_hat, y)
# loss = torch.nn.functional.mse_loss(torch.log(y_hat), torch.log(y))
self.log("train_loss", loss)
# add segmentation constraint
bsz = x.shape[0]
sample_size = 1000
if bsz > sample_size:
idx = torch.randperm(bsz)[:sample_size]
x = x[idx]
y_hat = y_hat[idx]
old_dist = torch.pdist(x, p=2)
new_dist = torch.pdist(y_hat, p=2)
# seg_loss = torch.log((old_dist - new_dist)).pow(2).mean()
seg_loss = self.mse_loss(old_dist, new_dist)
self.log("seg_loss", seg_loss)
loss += seg_loss * self.seg_loss_lambda
step = self.global_step
if step % 100 == 0:
self.progress(step / self.fitting_steps, desc="Fitting MLP")
return loss
def predict_step(self, batch, batch_idx, dataloader_idx=None):
x = batch[0]
y_hat = self.forward(x)
return y_hat
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
return optimizer
def fit_trans(rgb1, rgb2, num_layer=3, width=512, batch_size=256, lr=3e-4, fitting_steps=10000, fps_sample=4096, seg_loss_lambda=1.0):
A = rgb1.clone()
B = rgb2.clone()
# FPS sample on the data
from ncut_pytorch.ncut_pytorch import farthest_point_sampling
A_idx = farthest_point_sampling(A, fps_sample)
B_idx = farthest_point_sampling(B, fps_sample)
A_B_idx = np.concatenate([A_idx, B_idx])
A = A[A_B_idx]
B = B[A_B_idx]
from torch.utils.data import DataLoader, TensorDataset
# Dataset and DataLoader
dataset = TwoTensorDataset(A, B)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Initialize model and trainer
mlp = MLP(num_layer=num_layer, width=width, lr=lr, fitting_steps=fitting_steps, seg_loss_lambda=seg_loss_lambda)
trainer = pl.Trainer(
max_epochs=100000,
gpus=1,
max_steps=fitting_steps,
enable_checkpointing=False,
enable_progress_bar=False,
gradient_clip_val=1.0
)
# Create a DataLoader for tensor A
batch_size = 256 # Define your batch size
data_loader = DataLoader(TensorDataset(rgb1), batch_size=batch_size, shuffle=False)
# Train the model
trainer.fit(mlp, dataloader)
mlp.progress(0.99, desc="Applying MLP")
results = trainer.predict(mlp, data_loader)
A_transformed = torch.cat(results, dim=0)
return A_transformed
if USE_HUGGINGFACE_ZEROGPU:
@spaces.GPU(duration=60)
def _run_mlp_fit(*args, **kwargs):
return fit_trans(*args, **kwargs)
else:
def _run_mlp_fit(*args, **kwargs):
return fit_trans(*args, **kwargs)
def run_mlp_fit(input_gallery, target_gallery, num_layer=3, width=512, batch_size=256, lr=3e-4, fitting_steps=10000, fps_sample=4096, seg_loss_lambda=1.0):
# print("Fitting MLP")
# print("Target Gallery Length:", len(target_gallery))
# print("Input Gallery Length:", len(input_gallery))
if target_gallery is None or len(target_gallery) == 0:
raise gr.Error("No target images selected. Please use the Mark button to select the target images.")
if input_gallery is None or len(input_gallery) == 0:
raise gr.Error("No input images selected.")
def gallery_to_rgb(gallery):
images = [tup[0] for tup in gallery]
rgb = []
for image in images:
if isinstance(image, str):
image = Image.open(image)
image = image.convert('RGB')
image = torch.tensor(np.array(image)).float()
image = image / 255
rgb.append(image)
rgb = torch.stack(rgb)
shape = rgb.shape
rgb = rgb.reshape(-1, 3)
return rgb, shape
target_rgb, target_shape = gallery_to_rgb(target_gallery)
input_rgb, input_shape = gallery_to_rgb(input_gallery)
input_transformed = _run_mlp_fit(input_rgb, target_rgb, num_layer=num_layer, width=width, batch_size=batch_size, lr=lr,
fitting_steps=fitting_steps, fps_sample=fps_sample, seg_loss_lambda=seg_loss_lambda)
input_transformed = input_transformed.reshape(*input_shape)
pil_images = to_pil_images(input_transformed, resize=False)
return pil_images
def make_input_video_section():
# gr.Markdown('### Input Video')
input_gallery = gr.Video(value=None, label="Select video", elem_id="video-input", height="auto", show_share_button=False, interactive=True)
gr.Markdown('_image backbone model is used to extract features from each frame, NCUT is computed on all frames_')
max_frames_number = gr.Number(100, label="Max frames", elem_id="max_frames")
# max_frames_number = gr.Slider(1, 200, step=1, label="Max frames", value=100, elem_id="max_frames")
submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary')
clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button', variant='stop')
return input_gallery, submit_button, clear_images_button, max_frames_number
def load_dataset_images(is_advanced, dataset_name, num_images=10,
is_filter=False, filter_by_class_text="0,1,2",
is_random=False, seed=1):
progress = gr.Progress()
progress(0, desc="Loading Images")
if dataset_name == "EgoExo":
is_advanced = "Basic"
if is_advanced == "Basic":
gr.Info(f"Loaded images from EgoExo")
return default_images
try:
progress(0.5, desc="Downloading Dataset")
if 'EgoThink' in dataset_name:
dataset = load_dataset(dataset_name, 'Activity', trust_remote_code=True)
else:
dataset = load_dataset(dataset_name, trust_remote_code=True)
key = list(dataset.keys())[0]
dataset = dataset[key]
except Exception as e:
raise gr.Error(f"Error loading dataset {dataset_name}: {e}")
if num_images > len(dataset):
num_images = len(dataset)
if len(filter_by_class_text) == 0:
is_filter = False
if is_filter:
progress(0.8, desc="Filtering Images")
classes = [int(i) for i in filter_by_class_text.split(",")]
labels = np.array(dataset['label'])
unique_labels = np.unique(labels)
valid_classes = [i for i in classes if i in unique_labels]
invalid_classes = [i for i in classes if i not in unique_labels]
if len(invalid_classes) > 0:
gr.Warning(f"Classes {invalid_classes} not found in the dataset.")
if len(valid_classes) == 0:
raise gr.Error(f"Classes {classes} not found in the dataset.")
# shuffle each class
chunk_size = num_images // len(valid_classes)
image_idx = []
for i in valid_classes:
idx = np.where(labels == i)[0]
if is_random:
if chunk_size < len(idx):
idx = np.random.RandomState(seed).choice(idx, chunk_size, replace=False)
else:
gr.Warning(f"Class {i} has less than {chunk_size} images.")
idx = idx[:chunk_size]
else:
idx = idx[:chunk_size]
image_idx.extend(idx.tolist())
if not is_filter:
if is_random:
if num_images < len(dataset):
image_idx = np.random.RandomState(seed).choice(len(dataset), num_images, replace=False).tolist()
else:
gr.Warning(f"Dataset has less than {num_images} images.")
image_idx = list(range(num_images))
else:
image_idx = list(range(num_images))
key = 'image' if 'image' in dataset[0] else list(dataset[0].keys())[0]
images = [dataset[i][key] for i in image_idx]
gr.Info(f"Loaded {len(images)} images from {dataset_name}")
del dataset
if dataset_name in CENTER_CROP_DATASETS:
def center_crop_image(img):
# image: PIL image
w, h = img.size
min_hw = min(h, w)
# center crop
left = (w - min_hw) // 2
top = (h - min_hw) // 2
right = left + min_hw
bottom = top + min_hw
img = img.crop((left, top, right, bottom))
return img
images = [center_crop_image(image) for image in images]
return images
def load_and_append(existing_images, *args, **kwargs):
new_images = load_dataset_images(*args, **kwargs)
if new_images is None:
return existing_images
if len(new_images) == 0:
return existing_images
if existing_images is None:
existing_images = []
existing_images += new_images
gr.Info(f"Total images: {len(existing_images)}")
return existing_images
def make_input_images_section(rows=1, cols=3, height="auto", advanced=False, is_random=False, allow_download=False, markdown=True, n_example_images=100):
if markdown:
gr.Markdown('### Input Images')
input_gallery = gr.Gallery(value=None, label="Input images", show_label=True, elem_id="input_images", columns=[cols], rows=[rows], object_fit="contain", height=height, type="pil", show_share_button=False,
format="webp")
submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary')
with gr.Row():
clear_images_button = gr.Button("🗑️ Clear", elem_id='clear_button', variant='stop')
clear_images_button.click(fn=lambda: gr.update(value=None), outputs=[input_gallery])
upload_button = gr.UploadButton(elem_id="upload_button", label="⬆️ Upload", variant='secondary', file_types=["image"], file_count="multiple")
def convert_to_pil_and_append(images, new_images):
if images is None:
images = []
if new_images is None:
return images
if isinstance(new_images, Image.Image):
images.append(new_images)
if isinstance(new_images, list):
images += [Image.open(new_image) for new_image in new_images]
if isinstance(new_images, str):
images.append(Image.open(new_images))
gr.Info(f"Total images: {len(images)}")
return images
upload_button.upload(convert_to_pil_and_append, inputs=[input_gallery, upload_button], outputs=[input_gallery])
if allow_download:
create_file_button, download_button = add_download_button(input_gallery, "input_images")
gr.Markdown('### Load Datasets')
advanced_radio = gr.Radio(["Basic", "Advanced"], label="Datasets Menu", value="Advanced" if advanced else "Basic", elem_id="advanced-radio", show_label=True)
with gr.Column() as basic_block:
# gr.Markdown('### Example Image Sets')
def make_example(name, images, dataset_name):
with gr.Row():
button = gr.Button("Load\n"+name, elem_id=f"example-{name}", elem_classes="small-button", variant='secondary', size="sm", scale=1, min_width=60)
gallery = gr.Gallery(value=images, label=name, show_label=True, columns=[3], rows=[1], interactive=False, height=80, scale=8, object_fit="cover", min_width=140, allow_preview=False)
button.click(fn=lambda: gr.update(value=load_dataset_images(True, dataset_name, n_example_images, is_random=True, seed=42)), outputs=[input_gallery])
return gallery, button
example_items = [
("EgoExo", ['./images/egoexo1.jpg', './images/egoexo3.jpg', './images/egoexo2.jpg'], "EgoExo"),
("Ego", ['./images/egothink1.jpg', './images/egothink2.jpg', './images/egothink3.jpg'], "EgoThink/EgoThink"),
("Face", ['./images/face1.jpg', './images/face2.jpg', './images/face3.jpg'], "nielsr/CelebA-faces"),
("Pose", ['./images/pose1.jpg', './images/pose2.jpg', './images/pose3.jpg'], "sayakpaul/poses-controlnet-dataset"),
# ("CatDog", ['./images/catdog1.jpg', './images/catdog2.jpg', './images/catdog3.jpg'], "microsoft/cats_vs_dogs"),
# ("Bird", ['./images/bird1.jpg', './images/bird2.jpg', './images/bird3.jpg'], "Multimodal-Fatima/CUB_train"),
# ("ChestXray", ['./images/chestxray1.jpg', './images/chestxray2.jpg', './images/chestxray3.jpg'], "hongrui/mimic_chest_xray_v_1"),
("BrainMRI", ['./images/brain1.jpg', './images/brain2.jpg', './images/brain3.jpg'], "sartajbhuvaji/Brain-Tumor-Classification"),
("Kanji", ['./images/kanji1.jpg', './images/kanji2.jpg', './images/kanji3.jpg'], "yashvoladoddi37/kanjienglish"),
]
for name, images, dataset_name in example_items:
make_example(name, images, dataset_name)
with gr.Column() as advanced_block:
load_images_button = gr.Button("🔴 Load Images", elem_id="load-images-button", variant='primary')
# dataset_names = DATASET_NAMES
# dataset_classes = DATASET_CLASSES
dataset_categories = list(DATASETS.keys())
defualt_cat = dataset_categories[0]
def get_choices(cat):
return [tup[0] for tup in DATASETS[cat]]
defualt_choices = get_choices(defualt_cat)
with gr.Row():
dataset_radio = gr.Radio(dataset_categories, label="Dataset Category", value=defualt_cat, elem_id="dataset-radio", show_label=True, min_width=600)
# dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="mrm8488/ImageNet1K-val", elem_id="dataset", min_width=300)
dataset_dropdown = gr.Dropdown(defualt_choices, label="Dataset name", value=defualt_choices[0], elem_id="dataset", min_width=400)
dataset_radio.change(fn=lambda x: gr.update(choices=get_choices(x), value=get_choices(x)[0]), inputs=dataset_radio, outputs=dataset_dropdown)
# num_images_slider = gr.Number(10, label="Number of images", elem_id="num_images")
num_images_slider = gr.Slider(1, 1000, step=1, label="Number of images", value=10, elem_id="num_images", min_width=200)
if not is_random:
filter_by_class_checkbox = gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox")
filter_by_class_text = gr.Textbox(label="Class to select", value="0,33,99", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. (1000 classes)", visible=True)
# is_random_checkbox = gr.Checkbox(label="Random shuffle", value=False, elem_id="random_seed_checkbox")
# random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=False)
is_random_checkbox = gr.Checkbox(label="Random shuffle", value=True, elem_id="random_seed_checkbox")
random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=True)
if is_random:
filter_by_class_checkbox = gr.Checkbox(label="Filter by class", value=False, elem_id="filter_by_class_checkbox")
filter_by_class_text = gr.Textbox(label="Class to select", value="0,33,99", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. (1000 classes)", visible=False)
is_random_checkbox = gr.Checkbox(label="Random shuffle", value=True, elem_id="random_seed_checkbox")
random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=42, elem_id="random_seed", visible=True)
# add functionality, save and load images to profile
with gr.Accordion("Saved Image Profiles", open=False) as profile_accordion:
with gr.Row():
profile_text = gr.Textbox(label="Profile name", placeholder="Type here: Profile name to save/load/delete", elem_id="profile-name", scale=6, show_label=False)
list_profiles_button = gr.Button("📋 List", elem_id="list-profile-button", variant='secondary', scale=3)
with gr.Row():
save_profile_button = gr.Button("💾 Save", elem_id="save-profile-button", variant='secondary')
load_profile_button = gr.Button("📂 Load", elem_id="load-profile-button", variant='secondary')
delete_profile_button = gr.Button("🗑️ Delete", elem_id="delete-profile-button", variant='secondary')
class OnDiskProfiles:
def __init__(self, profile_dir="demo_profiles"):
if not os.path.exists(profile_dir):
os.makedirs(profile_dir)
self.profile_dir = profile_dir
def list_profiles(self):
profiles = os.listdir(self.profile_dir)
# remove hidden files
profiles = [p for p in profiles if not p.startswith(".")]
if len(profiles) == 0:
return "No profiles found."
profile_text = "</br>".join(profiles)
n_files = len(profiles)
profile_text = f"Number of profiles: {n_files}</br>---------</br>" + profile_text
return profile_text
def save_profile(self, profile_name, images):
profile_path = os.path.join(self.profile_dir, profile_name)
if os.path.exists(profile_path):
raise gr.Error(f"Profile {profile_name} already exists.")
with open(profile_path, "wb") as f:
pickle.dump(images, f)
gr.Info(f"Profile {profile_name} saved.")
return profile_path
def load_profile(self, profile_name, existing_images):
profile_path = os.path.join(self.profile_dir, profile_name)
if not os.path.exists(profile_path):
raise gr.Error(f"Profile {profile_name} not found.")
with open(profile_path, "rb") as f:
images = pickle.load(f)
gr.Info(f"Profile {profile_name} loaded.")
if existing_images is None:
existing_images = []
return existing_images + images
def delete_profile(self, profile_name):
profile_path = os.path.join(self.profile_dir, profile_name)
os.remove(profile_path)
gr.Info(f"Profile {profile_name} deleted.")
return profile_path
home_dir = os.path.expanduser("~")
defualt_dir = os.path.join(home_dir, ".cache")
cache_dir = os.environ.get("DEMO_PROFILE_CACHE_DIR", defualt_dir)
cache_dir = os.path.join(cache_dir, "demo_profiles")
on_disk_profiles = OnDiskProfiles(cache_dir)
save_profile_button.click(fn=lambda name, images: on_disk_profiles.save_profile(name, images), inputs=[profile_text, input_gallery])
load_profile_button.click(fn=lambda name, existing_images: gr.update(value=on_disk_profiles.load_profile(name, existing_images)), inputs=[profile_text, input_gallery], outputs=[input_gallery])
delete_profile_button.click(fn=lambda name: on_disk_profiles.delete_profile(name), inputs=profile_text)
list_profiles_button.click(fn=lambda: gr.Info(on_disk_profiles.list_profiles(), duration=0))
if advanced:
advanced_block.visible = True
basic_block.visible = False
else:
advanced_block.visible = False
basic_block.visible = True
# change visibility
advanced_radio.change(fn=lambda x: gr.update(visible=x=="Advanced"), inputs=advanced_radio, outputs=[advanced_block])
advanced_radio.change(fn=lambda x: gr.update(visible=x=="Basic"), inputs=advanced_radio, outputs=[basic_block])
def find_num_classes(dataset_name):
num_classes = None
for cat, datasets in DATASETS.items():
datasets = [tup[0] for tup in datasets]
if dataset_name in datasets:
num_classes = DATASETS[cat][datasets.index(dataset_name)][1]
break
return num_classes
def change_filter_options(dataset_name):
num_classes = find_num_classes(dataset_name)
if num_classes is None:
return (gr.Checkbox(label="Filter by class", value=False, elem_id="filter_by_class_checkbox", visible=False),
gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info="e.g. `0,1,2`. This dataset has no class label", visible=False))
return (gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox", visible=True),
gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=True))
dataset_dropdown.change(fn=change_filter_options, inputs=dataset_dropdown, outputs=[filter_by_class_checkbox, filter_by_class_text])
def change_filter_by_class(is_filter, dataset_name):
num_classes = find_num_classes(dataset_name)
return gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=is_filter)
filter_by_class_checkbox.change(fn=change_filter_by_class, inputs=[filter_by_class_checkbox, dataset_dropdown], outputs=filter_by_class_text)
def change_random_seed(is_random):
return gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=is_random)
is_random_checkbox.change(fn=change_random_seed, inputs=is_random_checkbox, outputs=random_seed_slider)
load_images_button.click(load_and_append,
inputs=[input_gallery, advanced_radio, dataset_dropdown, num_images_slider,
filter_by_class_checkbox, filter_by_class_text,
is_random_checkbox, random_seed_slider],
outputs=[input_gallery])
return input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button
# def random_rotate_rgb_gallery(images):
# if images is None or len(images) == 0:
# gr.Warning("No images selected.")
# return []
# # read webp images
# images = [Image.open(image[0]).convert("RGB") for image in images]
# images = [np.array(image).astype(np.float32) for image in images]
# images = np.stack(images)
# images = torch.tensor(images) / 255
# position = np.random.choice([1, 2, 4, 5, 6])
# images = rotate_rgb_cube(images, position)
# images = to_pil_images(images, resize=False)
# return images
def protect_original_image_in_plot(original_image, rotated_images):
plot_h, plot_w = 332, 1542
image_h, image_w = original_image.shape[1], original_image.shape[2]
if not (plot_h == image_h and plot_w == image_w):
return rotated_images
protection_w = 190
rotated_images[:, :, :protection_w] = original_image[:, :, :protection_w]
return rotated_images
def sequence_rotate_rgb_gallery(images):
if images is None or len(images) == 0:
gr.Warning("No images selected.")
return []
# read webp images
images = [Image.open(image[0]).convert("RGB") for image in images]
images = [np.array(image).astype(np.float32) for image in images]
images = np.stack(images)
images = torch.tensor(images) / 255
original_images = images.clone()
rotation_matrix = torch.tensor([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).float()
images = images @ rotation_matrix
images = protect_original_image_in_plot(original_images, images)
images = to_pil_images(images, resize=False)
return images
def flip_rgb_gallery(images, axis=0):
if images is None or len(images) == 0:
gr.Warning("No images selected.")
return []
# read webp images
images = [Image.open(image[0]).convert("RGB") for image in images]
images = [np.array(image).astype(np.float32) for image in images]
images = np.stack(images)
images = torch.tensor(images) / 255
original_images = images.clone()
images = 1 - images
images = protect_original_image_in_plot(original_images, images)
images = to_pil_images(images, resize=False)
return images
def add_rotate_flip_buttons(output_gallery):
with gr.Row():
rotate_button = gr.Button("🔄 Rotate", elem_id="rotate_button", variant='secondary')
rotate_button.click(sequence_rotate_rgb_gallery, inputs=[output_gallery], outputs=[output_gallery])
flip_button = gr.Button("🔃 Flip", elem_id="flip_button", variant='secondary')
flip_button.click(flip_rgb_gallery, inputs=[output_gallery], outputs=[output_gallery])
return rotate_button, flip_button
def add_download_button(gallery, filename_prefix="output"):
def make_3x5_plot(images):
plot_list = []
# Split the list of images into chunks of 15
chunks = [images[i:i + 15] for i in range(0, len(images), 15)]
for chunk in chunks:
fig, axs = plt.subplots(3, 4, figsize=(12, 9))
for ax in axs.flatten():
ax.axis("off")
for ax, img in zip(axs.flatten(), chunk):
img = img.convert("RGB")
ax.imshow(img)
plt.tight_layout(h_pad=0.5, w_pad=0.3)
# Generate a unique filename
filename = uuid.uuid4()
tmp_path = f"/tmp/{filename}.png"
# Save the plot to the temporary file
plt.savefig(tmp_path, bbox_inches='tight', dpi=144)
# Open the saved image
img = Image.open(tmp_path)
img = img.convert("RGB")
img = copy.deepcopy(img)
# Remove the temporary file
os.remove(tmp_path)
plot_list.append(img)
plt.close()
return plot_list
def delete_file_after_delay(file_path, delay):
def delete_file():
if os.path.exists(file_path):
os.remove(file_path)
timer = threading.Timer(delay, delete_file)
timer.start()
def create_zip_file(images, filename_prefix=filename_prefix):
if images is None or len(images) == 0:
gr.Warning("No images selected.")
return None
gr.Info("Creating zip file for download...")
images = [image[0] for image in images]
if isinstance(images[0], str):
images = [Image.open(image) for image in images]
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
zip_filename = f"/tmp/gallery_download/{filename_prefix}_{timestamp}.zip"
os.makedirs(os.path.dirname(zip_filename), exist_ok=True)
plots = make_3x5_plot(images)
with zipfile.ZipFile(zip_filename, 'w') as zipf:
# Create a temporary directory to store images and plots
temp_dir = f"/tmp/gallery_download/images/{uuid.uuid4()}"
os.makedirs(temp_dir)
try:
# Save images to the temporary directory
for i, img in enumerate(images):
img = img.convert("RGB")
img_path = os.path.join(temp_dir, f"single_{i:04d}.jpg")
img.save(img_path)
zipf.write(img_path, f"single_{i:04d}.jpg")
# Save plots to the temporary directory
for i, plot in enumerate(plots):
plot = plot.convert("RGB")
plot_path = os.path.join(temp_dir, f"grid_{i:04d}.jpg")
plot.save(plot_path)
zipf.write(plot_path, f"grid_{i:04d}.jpg")
finally:
# Clean up the temporary directory
for file in os.listdir(temp_dir):
os.remove(os.path.join(temp_dir, file))
os.rmdir(temp_dir)
# Schedule the deletion of the zip file after 24 hours (86400 seconds)
delete_file_after_delay(zip_filename, 86400)
gr.Info(f"File is ready for download: {os.path.basename(zip_filename)}")
return gr.update(value=zip_filename, interactive=True)
with gr.Row():
create_file_button = gr.Button("📦 Pack", elem_id="create_file_button", variant='secondary')
download_button = gr.DownloadButton(label="📥 Download", value=None, variant='secondary', elem_id="download_button", interactive=False)
create_file_button.click(create_zip_file, inputs=[gallery], outputs=[download_button])
def warn_on_click(filename):
if filename is None:
gr.Warning("No file to download, please `📦 Pack` first.")
interactive = filename is not None
return gr.update(interactive=interactive)
download_button.click(warn_on_click, inputs=[download_button], outputs=[download_button])
return create_file_button, download_button
def make_output_images_section(markdown=True, button=True):
if markdown:
gr.Markdown('### Output Images')
output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=True, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, interactive=False)
if button:
add_rotate_flip_buttons(output_gallery)
return output_gallery
def make_parameters_section(is_lisa=False, model_ratio=True, parameter_dropdown=True):
gr.Markdown("### Parameters <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Help</a>")
from ncut_pytorch.backbone import list_models, get_demo_model_names
model_names = list_models()
model_names = sorted(model_names)
def get_filtered_model_names(name):
return [m for m in model_names if name.lower() in m.lower()]
def get_default_model_name(name):
lst = get_filtered_model_names(name)
if len(lst) > 1:
return lst[1]
return lst[0]
if is_lisa:
model_dropdown = gr.Dropdown(["LISA(xinlai/LISA-7B-v1)"], label="Backbone", value="LISA(xinlai/LISA-7B-v1)", elem_id="model_name")
layer_slider = gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False)
layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"]
positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False)
negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False)
node_type_dropdown = gr.Dropdown(layer_names, label="LISA (SAM) decoder: Layer and Node", value="dec_1_block", elem_id="node_type")
else:
model_radio = gr.Radio(["CLIP", "DiNO", "Diffusion", "ImageNet", "MAE", "SAM", "Rand"], label="Backbone", value="DiNO", elem_id="model_radio", show_label=True, visible=model_ratio)
model_dropdown = gr.Dropdown(get_filtered_model_names("DiNO"), label="", value="DiNO(dino_vitb8_448)", elem_id="model_name", show_label=False)
model_radio.change(fn=lambda x: gr.update(choices=get_filtered_model_names(x), value=get_default_model_name(x)), inputs=model_radio, outputs=[model_dropdown])
layer_slider = gr.Slider(1, 12, step=1, label="Backbone: Layer index", value=10, elem_id="layer")
positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'")
positive_prompt.visible = False
negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'")
negative_prompt.visible = False
node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for smaller clusters')
def change_layer_slider(model_name):
# SD2, UNET
if "stable" in model_name.lower() and "diffusion" in model_name.lower():
from ncut_pytorch.backbone import SD_KEY_DICT
default_layer = 'up_2_resnets_1_block' if 'diffusion-3' not in model_name else 'block_23'
return (gr.Slider(1, 49, step=1, label="Diffusion: Timestep (Noise)", value=5, elem_id="layer", visible=True, info="Noise level, 50 is max noise"),
gr.Dropdown(SD_KEY_DICT[model_name], label="Diffusion: Layer and Node", value=default_layer, elem_id="node_type", info="U-Net (v1, v2) or DiT (v3)"))
if model_name == "LISSL(xinlai/LISSL-7B-v1)":
layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"]
default_layer = "dec_1_block"
return (gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False, info=""),
gr.Dropdown(layer_names, label="LISA decoder: Layer and Node", value=default_layer, elem_id="node_type"))
layer_dict = LAYER_DICT
if model_name in layer_dict:
value = layer_dict[model_name]
return (gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info=""),
gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?"))
else:
value = 12
return (gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info=""),
gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?"))
model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=[layer_slider, node_type_dropdown])
def change_prompt_text(model_name):
if model_name in promptable_diffusion_models:
return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=True),
gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=True))
return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False),
gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False))
model_dropdown.change(fn=change_prompt_text, inputs=model_dropdown, outputs=[positive_prompt, negative_prompt])
with gr.Accordion("Advanced Parameters: NCUT", open=False, visible=parameter_dropdown):
gr.Markdown("<a href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Docs: How to Get Better Segmentation</a>")
affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
# sampling_method_dropdown = gr.Dropdown(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method", info="Nyström approximation")
sampling_method_dropdown = gr.Radio(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method")
# ncut_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric")
ncut_metric_dropdown = gr.Radio(["euclidean", "cosine", "rbf"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric")
ncut_knn_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation")
ncut_indirect_connection = gr.Checkbox(label="indirect_connection", value=True, elem_id="ncut_indirect_connection", info="Add indirect connection to the sub-sampled graph")
ncut_make_orthogonal = gr.Checkbox(label="make_orthogonal", value=False, elem_id="ncut_make_orthogonal", info="Apply post-hoc eigenvectors orthogonalization")
with gr.Accordion("Advanced Parameters: Visualization", open=False, visible=parameter_dropdown):
# embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
embedding_method_dropdown = gr.Radio(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
# embedding_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="t-SNE/UMAP metric", value="euclidean", elem_id="embedding_metric")
embedding_metric_dropdown = gr.Radio(["euclidean", "cosine"], label="t-SNE/UMAP: metric", value="cosine", elem_id="embedding_metric")
num_sample_tsne_slider = gr.Slider(100, 10000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation")
perplexity_slider = gr.Slider(10, 1000, step=10, label="t-SNE: perplexity", value=150, elem_id="perplexity")
n_neighbors_slider = gr.Slider(10, 1000, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors")
min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist")
return [model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt]
custom_css = """
#unlock_button {
all: unset !important;
}
.form:has(#unlock_button) {
all: unset !important;
}
"""
demo = gr.Blocks(
theme=gr.themes.Base(spacing_size='md', text_size='lg', primary_hue='blue', neutral_hue='slate', secondary_hue='pink'),
# fill_width=False,
# title="ncut-pytorch",
css=custom_css,
)
with demo:
with gr.Tab('AlignedCut'):
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section()
num_images_slider.value = 30
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False)
with gr.Column(scale=5, min_width=200):
output_gallery = make_output_images_section()
cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[2], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
partial(run_fn, n_ret=2, plot_clusters=True),
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
],
outputs=[output_gallery, cluster_gallery, logging_text],
api_name="API_AlignedCut",
scroll_to_output=True,
)
with gr.Tab('AlignedCut (Advanced)', visible=False) as tab_alignedcut_advanced:
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True)
num_images_slider.value = 100
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False, lines=20)
with gr.Column(scale=5, min_width=200):
output_gallery = make_output_images_section()
add_download_button(output_gallery, "ncut_embed")
norm_gallery = gr.Gallery(value=[], label="Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
add_download_button(norm_gallery, "eig_norm")
cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
add_download_button(cluster_gallery, "clusters")
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
num_eig_slider.value = 100
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
partial(run_fn, n_ret=3, plot_clusters=True, alignedcut_eig_norm_plot=True, advanced=True),
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
],
outputs=[output_gallery, cluster_gallery, norm_gallery, logging_text],
scroll_to_output=True,
)
with gr.Tab('NCut'):
gr.Markdown('#### NCut (Legacy), not aligned, no Nyström approximation')
gr.Markdown('Each image is solved independently, <em>color is <b>not</b> aligned across images</em>')
gr.Markdown('---')
gr.Markdown('<p style="text-align: center;"><b>NCut vs. AlignedCut</b></p>')
with gr.Row():
with gr.Column(scale=5, min_width=200):
gr.Markdown('#### Pros')
gr.Markdown('- Easy Solution. Use less eigenvectors.')
gr.Markdown('- Exact solution. No Nyström approximation.')
with gr.Column(scale=5, min_width=200):
gr.Markdown('#### Cons')
gr.Markdown('- Not aligned. Distance is not preserved across images. No pseudo-labeling or correspondence.')
gr.Markdown('- Poor complexity scaling. Unable to handle large number of pixels.')
gr.Markdown('---')
with gr.Row():
with gr.Column(scale=5, min_width=200):
gr.Markdown(' ')
with gr.Column(scale=5, min_width=200):
gr.Markdown('<em>color is <b>not</b> aligned across images</em> 👇')
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section()
with gr.Column(scale=5, min_width=200):
output_gallery = make_output_images_section()
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
old_school_ncut_checkbox = gr.Checkbox(label="Old school NCut", value=True, elem_id="old_school_ncut")
invisible_list = [old_school_ncut_checkbox, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
num_sample_tsne_slider, knn_tsne_slider, sampling_method_dropdown, ncut_metric_dropdown]
for item in invisible_list:
item.visible = False
# logging text box
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
run_fn,
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown,
old_school_ncut_checkbox
],
outputs=[output_gallery, logging_text],
api_name="API_NCut",
)
with gr.Tab('Recursive Cut'):
gr.Markdown('NCUT can be applied recursively, the eigenvectors from previous iteration is the input for the next iteration NCUT. ')
gr.Markdown('__Recursive NCUT__ can amplify or weaken the connections, depending on the `affinity_focal_gamma` setting, please see [Documentation](https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/#recursive-ncut)')
gr.Markdown('---')
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section()
num_images_slider.value = 100
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Recursion #1)')
l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=True, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
add_rotate_flip_buttons(l1_gallery)
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Recursion #2)')
l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=True, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
add_rotate_flip_buttons(l2_gallery)
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Recursion #3)')
l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=True, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
add_rotate_flip_buttons(l3_gallery)
with gr.Row():
with gr.Column(scale=5, min_width=200):
with gr.Accordion("➡️ Recursion config", open=True):
l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig")
l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig")
l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig")
metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric")
l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.7, elem_id="recursion_l1_gamma")
l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.7, elem_id="recursion_l2_gamma")
l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma")
with gr.Column(scale=5, min_width=200):
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
num_eig_slider.visible = False
affinity_focal_gamma_slider.visible = False
true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder")
true_placeholder.visible = False
false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder")
false_placeholder.visible = False
number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder")
number_placeholder.visible = False
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
partial(run_fn, n_ret=3),
inputs=[
input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown,
false_placeholder, number_placeholder, true_placeholder,
l2_num_eig_slider, l3_num_eig_slider, metric_dropdown,
l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider
],
outputs=[l1_gallery, l2_gallery, l3_gallery, logging_text],
api_name="API_RecursiveCut"
)
with gr.Tab('Recursive Cut (Advanced)', visible=False) as tab_recursivecut_advanced:
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True)
num_images_slider.value = 100
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", lines=20)
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Recursion #1)')
l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=True, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
add_rotate_flip_buttons(l1_gallery)
add_download_button(l1_gallery, "ncut_embed_recur1")
l1_norm_gallery = gr.Gallery(value=[], label="Recursion #1 Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
add_download_button(l1_norm_gallery, "eig_norm_recur1")
l1_cluster_gallery = gr.Gallery(value=[], label="Recursion #1 Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height='auto', show_share_button=True, preview=False, interactive=False)
add_download_button(l1_cluster_gallery, "clusters_recur1")
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Recursion #2)')
l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=True, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
add_rotate_flip_buttons(l2_gallery)
add_download_button(l2_gallery, "ncut_embed_recur2")
l2_norm_gallery = gr.Gallery(value=[], label="Recursion #2 Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
add_download_button(l2_norm_gallery, "eig_norm_recur2")
l2_cluster_gallery = gr.Gallery(value=[], label="Recursion #2 Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height='auto', show_share_button=True, preview=False, interactive=False)
add_download_button(l2_cluster_gallery, "clusters_recur2")
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Recursion #3)')
l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=True, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
add_rotate_flip_buttons(l3_gallery)
add_download_button(l3_gallery, "ncut_embed_recur3")
l3_norm_gallery = gr.Gallery(value=[], label="Recursion #3 Eigenvector Magnitude", show_label=True, elem_id="eig_norm", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
add_download_button(l3_norm_gallery, "eig_norm_recur3")
l3_cluster_gallery = gr.Gallery(value=[], label="Recursion #3 Clusters", show_label=True, elem_id="clusters", columns=[2], rows=[4], object_fit="contain", height='auto', show_share_button=True, preview=False, interactive=False)
add_download_button(l3_cluster_gallery, "clusters_recur3")
with gr.Row():
with gr.Column(scale=5, min_width=200):
with gr.Accordion("➡️ Recursion config", open=True):
l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig")
l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig")
l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig")
metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric")
l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.7, elem_id="recursion_l1_gamma")
l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.7, elem_id="recursion_l2_gamma")
l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma")
with gr.Column(scale=5, min_width=200):
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
num_eig_slider.visible = False
affinity_focal_gamma_slider.visible = False
true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder")
true_placeholder.visible = False
false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder")
false_placeholder.visible = False
number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder")
number_placeholder.visible = False
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
partial(run_fn, n_ret=9, advanced=True),
inputs=[
input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown,
false_placeholder, number_placeholder, true_placeholder,
l2_num_eig_slider, l3_num_eig_slider, metric_dropdown,
l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider
],
outputs=[l1_gallery, l2_gallery, l3_gallery, l1_norm_gallery, l2_norm_gallery, l3_norm_gallery, l1_cluster_gallery, l2_cluster_gallery, l3_cluster_gallery, logging_text],
)
with gr.Tab('Video'):
with gr.Row():
with gr.Column(scale=5, min_width=200):
video_input_gallery, submit_button, clear_video_button, max_frame_number = make_input_video_section()
with gr.Column(scale=5, min_width=200):
video_output_gallery = gr.Video(value=None, label="NCUT Embedding", elem_id="ncut", height="auto", show_share_button=False)
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
num_sample_tsne_slider.value = 1000
perplexity_slider.value = 500
n_neighbors_slider.value = 500
knn_tsne_slider.value = 20
# logging text box
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
clear_video_button.click(lambda x: (None, None), outputs=[video_input_gallery, video_output_gallery])
place_holder_false = gr.Checkbox(label="Place holder", value=False, elem_id="place_holder_false")
place_holder_false.visible = False
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
run_fn,
inputs=[
video_input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown,
place_holder_false, max_frame_number
],
outputs=[video_output_gallery, logging_text],
api_name="API_VideoCut",
)
with gr.Tab('Text'):
try:
from app_text import make_demo
except ImportError:
print("Debugging")
from draft_gradio_app_text import make_demo
make_demo()
with gr.Tab('Vision-Language'):
gr.Markdown('[LISA](https://arxiv.org/pdf/2308.00692) is a vision-language model. Input a text prompt and image, LISA generate segmentation masks.')
gr.Markdown('In the mask decoder layers, LISA updates the image features w.r.t. the text prompt')
gr.Markdown('This page aims to see how the text prompt affects the image features')
gr.Markdown('---')
gr.Markdown('<p style="text-align: center;">Color is <b>aligned</b> across 3 prompts. NCUT is computed on the concatenated features from 3 prompts.</p>')
with gr.Row():
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Prompt #1)')
l1_gallery = gr.Gallery(format='png', value=[], label="Prompt #1", show_label=False, elem_id="ncut_p1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
prompt1 = gr.Textbox(label="Input Prompt #1", elem_id="prompt1", value="where is the person, include the clothes, don't include the guitar and chair", lines=3)
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Prompt #2)')
l2_gallery = gr.Gallery(format='png', value=[], label="Prompt #2", show_label=False, elem_id="ncut_p2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
prompt2 = gr.Textbox(label="Input Prompt #2", elem_id="prompt2", value="where is the Gibson Les Pual guitar", lines=3)
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output (Prompt #3)')
l3_gallery = gr.Gallery(format='png', value=[], label="Prompt #3", show_label=False, elem_id="ncut_p3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
prompt3 = gr.Textbox(label="Input Prompt #3", elem_id="prompt3", value="where is the floor", lines=3)
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section()
with gr.Column(scale=5, min_width=200):
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
] = make_parameters_section(is_lisa=True)
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
galleries = [l1_gallery, l2_gallery, l3_gallery]
true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder", visible=False)
submit_button.click(
partial(run_fn, n_ret=len(galleries)),
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
true_placeholder, prompt1, prompt2, prompt3,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
],
outputs=galleries + [logging_text],
)
with gr.Tab('Model Aligned'):
gr.Markdown('This page reproduce the results from the paper [AlignedCut](https://arxiv.org/abs/2406.18344)')
gr.Markdown('---')
gr.Markdown('**Features are aligned across models and layers.** A linear alignment transform is trained for each model/layer, learning signal comes from 1) fMRI brain activation and 2) segmentation preserving eigen-constraints.')
gr.Markdown('NCUT is computed on the concatenated graph of all models, layers, and images. Color is **aligned** across all models and layers.')
gr.Markdown('')
gr.Markdown("To see a good pattern, you will need to load 100~1000 images. 100 images need 10sec for RTX4090. Running out of HuggingFace GPU Quota? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn")
gr.Markdown('---')
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section()
num_images_slider.value = 100
with gr.Column(scale=5, min_width=200):
output_gallery = make_output_images_section()
gr.Markdown('### TIP1: use the `full-screen` button, and use `arrow keys` to navigate')
gr.Markdown('---')
gr.Markdown('Model: CLIP(ViT-B-16/openai), DiNOv2reg(dinov2_vitb14_reg), MAE(vit_base)')
gr.Markdown('Layer type: attention output (attn), without sum of residual')
gr.Markdown('### TIP2: for large image set, please increase the `num_sample` for t-SNE and NCUT')
gr.Markdown('---')
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
] = make_parameters_section(model_ratio=False)
model_dropdown.value = "AlignedThreeModelAttnNodes"
model_dropdown.visible = False
layer_slider.visible = False
node_type_dropdown.visible = False
num_sample_ncut_slider.value = 10000
num_sample_tsne_slider.value = 1000
# logging text box
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
run_fn,
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
],
# outputs=galleries + [logging_text],
outputs=[output_gallery, logging_text],
)
with gr.Tab('Model Aligned (Advanced)', visible=False) as tab_model_aligned_advanced:
gr.Markdown('This page reproduce the results from the paper [AlignedCut](https://arxiv.org/abs/2406.18344)')
gr.Markdown('---')
gr.Markdown('**Features are aligned across models and layers.** A linear alignment transform is trained for each model/layer, learning signal comes from 1) fMRI brain activation and 2) segmentation preserving eigen-constraints.')
gr.Markdown('NCUT is computed on the concatenated graph of all models, layers, and images. Color is **aligned** across all models and layers.')
gr.Markdown('')
gr.Markdown("To see a good pattern, you will need to load 100~1000 images. 100 images need 10sec for RTX4090. Running out of HuggingFace GPU Quota? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn")
gr.Markdown('---')
# with gr.Row():
# with gr.Column(scale=5, min_width=200):
# gr.Markdown('### Output (Recursion #1)')
# l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=False, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
# add_output_images_buttons(l1_gallery)
# with gr.Column(scale=5, min_width=200):
# gr.Markdown('### Output (Recursion #2)')
# l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=False, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
# add_output_images_buttons(l2_gallery)
# with gr.Column(scale=5, min_width=200):
# gr.Markdown('### Output (Recursion #3)')
# l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=False, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
# add_output_images_buttons(l3_gallery)
gr.Markdown('### Output (Recursion #1)')
l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=True, elem_id="ncut_l1", columns=[100], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False, preview=True)
add_rotate_flip_buttons(l1_gallery)
add_download_button(l1_gallery, "modelaligned_recur1")
gr.Markdown('### Output (Recursion #2)')
l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=True, elem_id="ncut_l2", columns=[100], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False, preview=True)
add_rotate_flip_buttons(l2_gallery)
add_download_button(l2_gallery, "modelaligned_recur2")
gr.Markdown('### Output (Recursion #3)')
l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=True, elem_id="ncut_l3", columns=[100], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False, preview=True)
add_rotate_flip_buttons(l3_gallery)
add_download_button(l3_gallery, "modelaligned_recur3")
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True)
num_images_slider.value = 100
with gr.Column(scale=5, min_width=200):
with gr.Accordion("➡️ Recursion config", open=True):
l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig")
l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig")
l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig")
metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric")
l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.5, elem_id="recursion_l1_gamma")
l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.5, elem_id="recursion_l2_gamma")
l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma")
gr.Markdown('---')
gr.Markdown('Model: CLIP(ViT-B-16/openai), DiNOv2reg(dinov2_vitb14_reg), MAE(vit_base)')
gr.Markdown('Layer type: attention output (attn), without sum of residual')
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
] = make_parameters_section(model_ratio=False)
num_eig_slider.visible = False
affinity_focal_gamma_slider.visible = False
model_dropdown.value = "AlignedThreeModelAttnNodes"
model_dropdown.visible = False
layer_slider.visible = False
node_type_dropdown.visible = False
num_sample_ncut_slider.value = 10000
num_sample_tsne_slider.value = 1000
# logging text box
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder")
true_placeholder.visible = False
false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder")
false_placeholder.visible = False
number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder")
number_placeholder.visible = False
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
partial(run_fn, n_ret=3, advanced=True),
inputs=[
input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown,
false_placeholder, number_placeholder, true_placeholder,
l2_num_eig_slider, l3_num_eig_slider, metric_dropdown,
l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider
],
outputs=[l1_gallery, l2_gallery, l3_gallery, logging_text],
)
with gr.Tab('Compare Models'):
def add_one_model(i_model=1):
with gr.Column(scale=5, min_width=200) as col:
gr.Markdown(f'### Output Images')
output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=False, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary')
add_rotate_flip_buttons(output_gallery)
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
# logging text box
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
run_fn,
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
],
outputs=[output_gallery, logging_text]
)
return col
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section()
submit_button.visible = False
for i in range(3):
add_one_model()
# Create rows and buttons in a loop
rows = []
buttons = []
for i in range(4):
row = gr.Row(visible=False)
rows.append(row)
with row:
for j in range(4):
with gr.Column(scale=5, min_width=200):
add_one_model()
button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3)
buttons.append(button)
if i > 0:
# Reveal the current row and next button
buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row)
buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button)
# Hide the current button
buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1])
# Last button only reveals the last row and hides itself
buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1])
buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1])
with gr.Tab('Compare Models (Advanced)', visible=False) as tab_compare_models_advanced:
target_images = gr.State([])
input_images = gr.State([])
def add_mlp_fitting_buttons(output_gallery, mlp_gallery, target_images=target_images, input_images=input_images):
with gr.Row():
# mark_as_target_button = gr.Button("mark target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary')
# mark_as_input_button = gr.Button("mark input", elem_id=f"mark_as_input_button_{output_gallery.elem_id}", variant='secondary')
mark_as_target_button = gr.Button("🎯 Mark Target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary')
fit_to_target_button = gr.Button("🔴 [MLP] Fit", elem_id=f"fit_to_target_button_{output_gallery.elem_id}", variant='primary')
def mark_fn(images, text="target"):
if images is None:
raise gr.Error("No images selected")
if len(images) == 0:
raise gr.Error("No images selected")
num_images = len(images)
gr.Info(f"Marked {num_images} images as {text}")
images = [(Image.open(tup[0]), []) for tup in images]
return images
mark_as_target_button.click(partial(mark_fn, text="target"), inputs=[output_gallery], outputs=[target_images])
# mark_as_input_button.click(partial(mark_fn, text="input"), inputs=[output_gallery], outputs=[input_images])
with gr.Accordion("➡️ MLP Parameters", open=False):
num_layers_slider = gr.Slider(2, 10, step=1, label="Number of Layers", value=3, elem_id=f"num_layers_slider_{output_gallery.elem_id}")
width_slider = gr.Slider(128, 4096, step=128, label="Width", value=512, elem_id=f"width_slider_{output_gallery.elem_id}")
batch_size_slider = gr.Slider(32, 4096, step=32, label="Batch Size", value=128, elem_id=f"batch_size_slider_{output_gallery.elem_id}")
lr_slider = gr.Slider(1e-6, 1, step=1e-6, label="Learning Rate", value=3e-4, elem_id=f"lr_slider_{output_gallery.elem_id}")
fitting_steps_slider = gr.Slider(1000, 100000, step=1000, label="Fitting Steps", value=30000, elem_id=f"fitting_steps_slider_{output_gallery.elem_id}")
fps_sample_slider = gr.Slider(128, 50000, step=128, label="FPS Sample", value=10240, elem_id=f"fps_sample_slider_{output_gallery.elem_id}")
segmentation_loss_lambda_slider = gr.Slider(0, 100, step=0.01, label="Segmentation Preserving Loss Lambda", value=1, elem_id=f"segmentation_loss_lambda_slider_{output_gallery.elem_id}")
fit_to_target_button.click(
run_mlp_fit,
inputs=[output_gallery, target_images, num_layers_slider, width_slider, batch_size_slider, lr_slider, fitting_steps_slider, fps_sample_slider, segmentation_loss_lambda_slider],
outputs=[mlp_gallery],
)
def add_one_model(i_model=1):
with gr.Column(scale=5, min_width=200) as col:
gr.Markdown(f'### Output Images')
output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=True, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary')
add_rotate_flip_buttons(output_gallery)
add_download_button(output_gallery, f"ncut_embed")
mlp_gallery = gr.Gallery(format='png', value=[], label="MLP color align", show_label=True, elem_id=f"mlp{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
add_mlp_fitting_buttons(output_gallery, mlp_gallery)
add_download_button(mlp_gallery, f"mlp_color_align")
norm_gallery = gr.Gallery(value=[], label="Eigenvector Magnitude", show_label=True, elem_id=f"eig_norm{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
add_download_button(norm_gallery, f"eig_norm")
cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id=f"clusters{i_model}", columns=[2], rows=[4], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
add_download_button(cluster_gallery, f"clusters")
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
# logging text box
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
partial(run_fn, n_ret=3, plot_clusters=True, alignedcut_eig_norm_plot=True, advanced=True),
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
],
outputs=[output_gallery, cluster_gallery, norm_gallery, logging_text]
)
output_gallery.change(lambda x: gr.update(value=x), inputs=[output_gallery], outputs=[mlp_gallery])
return output_gallery
galleries = []
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True)
submit_button.visible = False
for i in range(3):
g = add_one_model()
galleries.append(g)
# Create rows and buttons in a loop
rows = []
buttons = []
for i in range(4):
row = gr.Row(visible=False)
rows.append(row)
with row:
for j in range(4):
with gr.Column(scale=5, min_width=200):
g = add_one_model()
galleries.append(g)
button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3)
buttons.append(button)
if i > 0:
# Reveal the current row and next button
buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row)
buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button)
# Hide the current button
buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1])
# Last button only reveals the last row and hides itself
buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1])
buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1])
with gr.Tab('Directed (experimental)', visible=False) as tab_directed_ncut:
target_images = gr.State([])
input_images = gr.State([])
def add_mlp_fitting_buttons(output_gallery, mlp_gallery, target_images=target_images, input_images=input_images):
with gr.Row():
# mark_as_target_button = gr.Button("mark target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary')
# mark_as_input_button = gr.Button("mark input", elem_id=f"mark_as_input_button_{output_gallery.elem_id}", variant='secondary')
mark_as_target_button = gr.Button("🎯 Mark Target", elem_id=f"mark_as_target_button_{output_gallery.elem_id}", variant='secondary')
fit_to_target_button = gr.Button("🔴 [MLP] Fit", elem_id=f"fit_to_target_button_{output_gallery.elem_id}", variant='primary')
def mark_fn(images, text="target"):
if images is None:
raise gr.Error("No images selected")
if len(images) == 0:
raise gr.Error("No images selected")
num_images = len(images)
gr.Info(f"Marked {num_images} images as {text}")
images = [(Image.open(tup[0]), []) for tup in images]
return images
mark_as_target_button.click(partial(mark_fn, text="target"), inputs=[output_gallery], outputs=[target_images])
# mark_as_input_button.click(partial(mark_fn, text="input"), inputs=[output_gallery], outputs=[input_images])
with gr.Accordion("➡️ MLP Parameters", open=False):
num_layers_slider = gr.Slider(2, 10, step=1, label="Number of Layers", value=3, elem_id=f"num_layers_slider_{output_gallery.elem_id}")
width_slider = gr.Slider(128, 4096, step=128, label="Width", value=512, elem_id=f"width_slider_{output_gallery.elem_id}")
batch_size_slider = gr.Slider(32, 4096, step=32, label="Batch Size", value=128, elem_id=f"batch_size_slider_{output_gallery.elem_id}")
lr_slider = gr.Slider(1e-6, 1, step=1e-6, label="Learning Rate", value=3e-4, elem_id=f"lr_slider_{output_gallery.elem_id}")
fitting_steps_slider = gr.Slider(1000, 100000, step=1000, label="Fitting Steps", value=30000, elem_id=f"fitting_steps_slider_{output_gallery.elem_id}")
fps_sample_slider = gr.Slider(128, 50000, step=128, label="FPS Sample", value=10240, elem_id=f"fps_sample_slider_{output_gallery.elem_id}")
segmentation_loss_lambda_slider = gr.Slider(0, 100, step=0.01, label="Segmentation Preserving Loss Lambda", value=1, elem_id=f"segmentation_loss_lambda_slider_{output_gallery.elem_id}")
fit_to_target_button.click(
run_mlp_fit,
inputs=[output_gallery, target_images, num_layers_slider, width_slider, batch_size_slider, lr_slider, fitting_steps_slider, fps_sample_slider, segmentation_loss_lambda_slider],
outputs=[mlp_gallery],
)
def make_parameters_section_2model(model_ratio=True):
gr.Markdown("### Parameters <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Help</a>")
from ncut_pytorch.backbone import list_models, get_demo_model_names
model_names = list_models()
model_names = sorted(model_names)
# only CLIP DINO MAE is implemented for q k v
ok_models = ["CLIP(ViT", "DiNO(", "MAE("]
model_names = [m for m in model_names if any(ok in m for ok in ok_models)]
def get_filtered_model_names(name):
return [m for m in model_names if name.lower() in m.lower()]
def get_default_model_name(name):
lst = get_filtered_model_names(name)
if len(lst) > 1:
return lst[1]
return lst[0]
model_radio = gr.Radio(["CLIP", "DiNO", "MAE"], label="Backbone", value="DiNO", elem_id="model_radio", show_label=True, visible=model_ratio)
model_dropdown = gr.Dropdown(get_filtered_model_names("DiNO"), label="", value="DiNO(dino_vitb8_448)", elem_id="model_name", show_label=False)
model_radio.change(fn=lambda x: gr.update(choices=get_filtered_model_names(x), value=get_default_model_name(x)), inputs=model_radio, outputs=[model_dropdown])
layer_slider = gr.Slider(1, 12, step=1, label="Backbone: Layer index", value=10, elem_id="layer")
positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'")
positive_prompt.visible = False
negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'")
negative_prompt.visible = False
node_type_dropdown = gr.Dropdown(['q', 'k', 'v'],
label="Left-side Node Type", value="q", elem_id="node_type", info="In directed case, left-side SVD eigenvector is taken")
node_type_dropdown2 = gr.Dropdown(['q', 'k', 'v'],
label="Right-side Node Type", value="k", elem_id="node_type2")
head_index_text = gr.Textbox(value='all', label="Head Index", elem_id="head_index", type="text", info="which attention heads to use, comma separated, e.g. 0,1,2")
make_symmetric = gr.Checkbox(label="Make Symmetric", value=False, elem_id="make_symmetric", info="make the graph symmetric by A = (A + A.T) / 2")
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for smaller clusters')
def change_layer_slider(model_name):
# SD2, UNET
if "stable" in model_name.lower() and "diffusion" in model_name.lower():
from ncut_pytorch.backbone import SD_KEY_DICT
default_layer = 'up_2_resnets_1_block' if 'diffusion-3' not in model_name else 'block_23'
return (gr.Slider(1, 49, step=1, label="Diffusion: Timestep (Noise)", value=5, elem_id="layer", visible=True, info="Noise level, 50 is max noise"),
gr.Dropdown(SD_KEY_DICT[model_name], label="Diffusion: Layer and Node", value=default_layer, elem_id="node_type", info="U-Net (v1, v2) or DiT (v3)"))
if model_name == "LISSL(xinlai/LISSL-7B-v1)":
layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"]
default_layer = "dec_1_block"
return (gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False, info=""),
gr.Dropdown(layer_names, label="LISA decoder: Layer and Node", value=default_layer, elem_id="node_type"))
layer_dict = LAYER_DICT
if model_name in layer_dict:
value = layer_dict[model_name]
return gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info="")
else:
value = 12
return gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info="")
model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=layer_slider)
def change_prompt_text(model_name):
if model_name in promptable_diffusion_models:
return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=True),
gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=True))
return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False),
gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False))
model_dropdown.change(fn=change_prompt_text, inputs=model_dropdown, outputs=[positive_prompt, negative_prompt])
with gr.Accordion("Advanced Parameters: NCUT", open=False):
gr.Markdown("<a href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Docs: How to Get Better Segmentation</a>")
affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
# sampling_method_dropdown = gr.Dropdown(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method", info="Nyström approximation")
sampling_method_dropdown = gr.Radio(["QuickFPS", "random"], label="NCUT: Sampling method", value="QuickFPS", elem_id="sampling_method")
# ncut_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric")
ncut_metric_dropdown = gr.Radio(["euclidean", "cosine", "rbf"], label="NCUT: Distance metric", value="cosine", elem_id="ncut_metric")
ncut_knn_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation")
ncut_indirect_connection = gr.Checkbox(label="indirect_connection", value=False, elem_id="ncut_indirect_connection", info="TODO: Indirect connection is not implemented for directed NCUT", interactive=False)
ncut_make_orthogonal = gr.Checkbox(label="make_orthogonal", value=False, elem_id="ncut_make_orthogonal", info="Apply post-hoc eigenvectors orthogonalization")
with gr.Accordion("Advanced Parameters: Visualization", open=False):
# embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
embedding_method_dropdown = gr.Radio(["tsne_3d", "umap_3d", "umap_sphere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
# embedding_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="t-SNE/UMAP metric", value="euclidean", elem_id="embedding_metric")
embedding_metric_dropdown = gr.Radio(["euclidean", "cosine"], label="t-SNE/UMAP: metric", value="cosine", elem_id="embedding_metric")
num_sample_tsne_slider = gr.Slider(100, 10000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation")
perplexity_slider = gr.Slider(10, 1000, step=10, label="t-SNE: perplexity", value=150, elem_id="perplexity")
n_neighbors_slider = gr.Slider(10, 1000, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors")
min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist")
return [model_dropdown, layer_slider, node_type_dropdown, node_type_dropdown2, head_index_text, make_symmetric, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt]
def add_one_model(i_model=1):
with gr.Column(scale=5, min_width=200) as col:
gr.Markdown(f'### Output Images')
output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=True, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary')
add_rotate_flip_buttons(output_gallery)
add_download_button(output_gallery, f"ncut_embed")
mlp_gallery = gr.Gallery(format='png', value=[], label="MLP color align", show_label=True, elem_id=f"mlp{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False)
add_mlp_fitting_buttons(output_gallery, mlp_gallery)
add_download_button(mlp_gallery, f"mlp_color_align")
norm_gallery = gr.Gallery(value=[], label="Eigenvector Magnitude", show_label=True, elem_id=f"eig_norm{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
add_download_button(norm_gallery, f"eig_norm")
cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=True, elem_id=f"clusters{i_model}", columns=[2], rows=[4], object_fit="contain", height="auto", show_share_button=True, preview=False, interactive=False)
add_download_button(cluster_gallery, f"clusters")
[
model_dropdown, layer_slider, node_type_dropdown, node_type_dropdown2, head_index_text, make_symmetric, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
] = make_parameters_section_2model()
# logging text box
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
submit_button.click(
partial(run_fn, n_ret=3, plot_clusters=True, alignedcut_eig_norm_plot=True, advanced=True, directed=True),
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown,
*[false_placeholder for _ in range(9)],
node_type_dropdown2, head_index_text, make_symmetric
],
outputs=[output_gallery, cluster_gallery, norm_gallery, logging_text]
)
output_gallery.change(lambda x: gr.update(value=x), inputs=[output_gallery], outputs=[mlp_gallery])
return output_gallery
galleries = []
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(allow_download=True)
submit_button.visible = False
for i in range(3):
g = add_one_model()
galleries.append(g)
# Create rows and buttons in a loop
rows = []
buttons = []
for i in range(4):
row = gr.Row(visible=False)
rows.append(row)
with row:
for j in range(4):
with gr.Column(scale=5, min_width=200):
g = add_one_model()
galleries.append(g)
button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3)
buttons.append(button)
if i > 0:
# Reveal the current row and next button
buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row)
buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button)
# Hide the current button
buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1])
# Last button only reveals the last row and hides itself
buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1])
buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1])
with gr.Tab('Application'):
gr.Markdown("Draw some points on the image to find corrsponding segments in other images. E.g. click on one face to segment all the face. [Video Tutorial](https://ncut-pytorch.readthedocs.io/en/latest/gallery_application/)")
with gr.Row():
with gr.Column(scale=5, min_width=200):
gr.Markdown("### Step 0: Load Images")
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(markdown=False)
submit_button.visible = False
num_images_slider.value = 30
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False)
with gr.Column(scale=5, min_width=200):
gr.Markdown("### Step 1: NCUT Embedding")
output_gallery = make_output_images_section(markdown=False, button=False)
submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary')
add_rotate_flip_buttons(output_gallery)
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
] = make_parameters_section()
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
partial(run_fn, n_ret=1),
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
],
outputs=[output_gallery, logging_text],
)
with gr.Column(scale=5, min_width=200):
gr.Markdown("### Step 2a: Pick an Image")
from gradio_image_prompter import ImagePrompter
image_type_radio = gr.Radio(["Original", "NCUT"], label="Image Display Type", value="Original", elem_id="image_type_radio")
with gr.Row():
image1_slider = gr.Slider(0, 100, step=1, label="Image#1 Index", value=0, elem_id="image1_slider", interactive=True)
image2_slider = gr.Slider(0, 100, step=1, label="Image#2 Index", value=1, elem_id="image2_slider", interactive=True)
image3_slider = gr.Slider(0, 100, step=1, label="Image#3 Index", value=2, elem_id="image3_slider", interactive=True)
load_one_image_button = gr.Button("🔴 Load", elem_id="load_one_image_button", variant='primary')
gr.Markdown("### Step 2b: Draw Points")
gr.Markdown("""
<h5>
🖱️ Left Click: Foreground </br>
🖱️ Middle Click: Background </br></br>
Top Right Buttons: </br>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none"
stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"
style="vertical-align: middle; height: 1em; width: 1em; display: inline;">
<polyline points="1 4 1 10 7 10"></polyline>
<path d="M3.51 15a9 9 0 1 0 2.13-9.36L1 10"></path>
</svg> :
Remove Last Point
</br>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none"
style="vertical-align: middle; height: 1em; width: 1em; display: inline;">
<g fill="none">
<path fill="currentColor" d="m5.505 11.41l.53.53l-.53-.53ZM3 14.952h-.75H3ZM9.048 21v.75V21ZM11.41 5.505l-.53-.53l.53.53Zm1.831 12.34a.75.75 0 0 0 1.06-1.061l-1.06 1.06ZM7.216 9.697a.75.75 0 1 0-1.06 1.061l1.06-1.06Zm10.749 2.362l-5.905 5.905l1.06 1.06l5.905-5.904l-1.06-1.06Zm-11.93-.12l5.905-5.905l-1.06-1.06l-5.905 5.904l1.06 1.06Zm0 6.025c-.85-.85-1.433-1.436-1.812-1.933c-.367-.481-.473-.79-.473-1.08h-1.5c0 .749.312 1.375.78 1.99c.455.596 1.125 1.263 1.945 2.083l1.06-1.06Zm-1.06-7.086c-.82.82-1.49 1.488-1.945 2.084c-.468.614-.78 1.24-.78 1.99h1.5c0-.29.106-.6.473-1.08c.38-.498.962-1.083 1.812-1.933l-1.06-1.06Zm7.085 7.086c-.85.85-1.435 1.433-1.933 1.813c-.48.366-.79.472-1.08.472v1.5c.75 0 1.376-.312 1.99-.78c.596-.455 1.264-1.125 2.084-1.945l-1.06-1.06Zm-7.085 1.06c.82.82 1.487 1.49 2.084 1.945c.614.468 1.24.78 1.989.78v-1.5c-.29 0-.599-.106-1.08-.473c-.497-.38-1.083-.962-1.933-1.812l-1.06 1.06Zm12.99-12.99c.85.85 1.433 1.436 1.813 1.933c.366.481.472.79.472 1.08h1.5c0-.749-.312-1.375-.78-1.99c-.455-.596-1.125-1.263-1.945-2.083l-1.06 1.06Zm1.06 7.086c.82-.82 1.49-1.488 1.945-2.084c.468-.614.78-1.24.78-1.99h-1.5c0 .29-.106.6-.473 1.08c-.38.498-.962 1.083-1.812 1.933l1.06 1.06Zm0-8.146c-.82-.82-1.487-1.49-2.084-1.945c-.614-.468-1.24-.78-1.989-.78v1.5c.29 0 .599.106 1.08.473c.497.38 1.083.962 1.933 1.812l1.06-1.06Zm-7.085 1.06c.85-.85 1.435-1.433 1.933-1.812c.48-.367.79-.473 1.08-.473v-1.5c-.75 0-1.376.312-1.99.78c-.596.455-1.264 1.125-2.084 1.945l1.06 1.06Zm2.362 10.749L7.216 9.698l-1.06 1.061l7.085 7.085l1.06-1.06Z"></path>
<path stroke="currentColor" stroke-linecap="round" stroke-width="1.5" d="M9 21h12"></path></g>
</svg> :
Clear All Points
</br>
(Known issue: please manually clear the points after loading new image)
</h5>
""")
prompt_image1 = ImagePrompter(show_label=False, elem_id="prompt_image1", interactive=False)
prompt_image2 = ImagePrompter(show_label=False, elem_id="prompt_image2", interactive=False)
prompt_image3 = ImagePrompter(show_label=False, elem_id="prompt_image3", interactive=False)
# def update_number_of_images(images):
# if images is None:
# return gr.update(max=0, value=0)
# return gr.update(max=len(images)-1, value=1)
# input_gallery.change(update_number_of_images, inputs=input_gallery, outputs=image1_slider)
def update_prompt_image(original_images, ncut_images, image_type, index):
if image_type == "Original":
images = original_images
else:
images = ncut_images
if images is None:
return
total_len = len(images)
if total_len == 0:
return
if index >= total_len:
index = total_len - 1
return ImagePrompter(value={'image': images[index][0], 'points': []}, interactive=True)
# return gr.Image(value=images[index][0], elem_id=f"prompt_image{randint}", interactive=True)
load_one_image_button.click(update_prompt_image, inputs=[input_gallery, output_gallery, image_type_radio, image1_slider], outputs=[prompt_image1])
load_one_image_button.click(update_prompt_image, inputs=[input_gallery, output_gallery, image_type_radio, image2_slider], outputs=[prompt_image2])
load_one_image_button.click(update_prompt_image, inputs=[input_gallery, output_gallery, image_type_radio, image3_slider], outputs=[prompt_image3])
image3_slider.visible = False
prompt_image3.visible = False
with gr.Column(scale=5, min_width=200):
gr.Markdown("### Step 3: Segment and Crop")
mask_gallery = gr.Gallery(value=[], label="Segmentation Masks", show_label=True, elem_id="mask_gallery", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, interactive=False)
run_crop_button = gr.Button("🔴 RUN", elem_id="run_crop_button", variant='primary')
add_download_button(mask_gallery, "mask")
distance_threshold_slider = gr.Slider(0, 1, step=0.01, label="Mask Threshold (FG)", value=0.9, elem_id="distance_threshold", info="increase for smaller FG mask")
fg_contrast_slider = gr.Slider(0, 2, step=0.01, label="Mask Scaling (FG)", value=1, elem_id="distance_focal", info="increase for smaller FG mask", visible=True)
negative_distance_threshold_slider = gr.Slider(0, 1, step=0.01, label="Mask Threshold (BG)", value=0.9, elem_id="distance_threshold", info="increase for less BG removal")
bg_contrast_slider = gr.Slider(0, 2, step=0.01, label="Mask Scaling (BG)", value=1, elem_id="distance_focal", info="increase for less BG removal", visible=True)
overlay_image_checkbox = gr.Checkbox(label="Overlay Original Image", value=True, elem_id="overlay_image_checkbox")
# filter_small_area_checkbox = gr.Checkbox(label="Noise Reduction", value=True, elem_id="filter_small_area_checkbox")
distance_power_slider = gr.Slider(-3, 3, step=0.01, label="Distance Power", value=0.5, elem_id="distance_power", info="d = d^p", visible=False)
crop_gallery = gr.Gallery(value=[], label="Cropped Images", show_label=True, elem_id="crop_gallery", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, interactive=False)
add_download_button(crop_gallery, "cropped")
crop_expand_slider = gr.Slider(1.0, 2.0, step=0.1, label="Crop bbox Expand Factor", value=1.0, elem_id="crop_expand", info="increase for larger crop", visible=True)
area_threshold_slider = gr.Slider(0, 100, step=0.1, label="Area Threshold (%)", value=3, elem_id="area_threshold", info="for noise filtering (area of connected components)", visible=False)
# logging_image = gr.Image(value=None, label="Logging Image", elem_id="logging_image", interactive=False)
# prompt_image.change(lambda x: gr.update(value=x.get('image', None)), inputs=prompt_image, outputs=[logging_image])
def relative_xy(prompts):
image = prompts['image']
points = np.asarray(prompts['points'])
if points.shape[0] == 0:
return [], []
is_point = points[:, 5] == 4.0
points = points[is_point]
is_positive = points[:, 2] == 1.0
is_negative = points[:, 2] == 0.0
xy = points[:, :2].tolist()
if isinstance(image, str):
image = Image.open(image)
image = np.array(image)
h, w = image.shape[:2]
new_xy = [(x/w, y/h) for x, y in xy]
# print(new_xy)
return new_xy, is_positive
def xy_rgb(prompts, image_idx, ncut_images):
image = ncut_images[image_idx]
xy, is_positive = relative_xy(prompts)
rgbs = []
for i, (x, y) in enumerate(xy):
rgb = image.getpixel((int(x*image.width), int(y*image.height)))
rgbs.append((rgb, is_positive[i]))
return rgbs
def run_crop(original_images, ncut_images, prompts1, prompts2, prompts3, image_idx1, image_idx2, image_idx3,
crop_expand, distance_threshold, distance_power, area_threshold, overlay_image, negative_distance_threshold,
fg_contrast, bg_contrast):
ncut_images = [image[0] for image in ncut_images]
if len(ncut_images) == 0:
return []
if isinstance(ncut_images[0], str):
ncut_images = [Image.open(image) for image in ncut_images]
rgbs = xy_rgb(prompts1, image_idx1, ncut_images) + \
xy_rgb(prompts2, image_idx2, ncut_images) + \
xy_rgb(prompts3, image_idx3, ncut_images)
# print(rgbs)
ncut_images = [np.array(image).astype(np.float32) for image in ncut_images]
ncut_pixels = [image.reshape(-1, 3) for image in ncut_images]
h, w = ncut_images[0].shape[:2]
ncut_pixels = torch.tensor(np.array(ncut_pixels).reshape(-1, 3)) / 255
# normalized_ncut_pixels = F.normalize(ncut_pixels, p=2, dim=-1)
def to_mask(heatmap, threshold, gamma):
heatmap = (heatmap - heatmap.mean()) / heatmap.std()
heatmap = heatmap.double()
heatmap = torch.exp(heatmap)
# heatmap = 1 / (heatmap + 1e-6)
heatmap = 1 / heatmap ** gamma
# import math
# heatmap = 1 / heatmap ** math.log(6.1 - gamma)
if heatmap.shape[0] > 10000:
np.random.seed(0)
random_idx = np.random.choice(heatmap.shape[0], 10000, replace=False)
vmin, vmax = heatmap[random_idx].quantile(0.01), heatmap[random_idx].quantile(0.99)
else:
vmin, vmax = heatmap.quantile(0.01), heatmap.quantile(0.99)
heatmap = (heatmap - vmin) / (vmax - vmin)
heatmap = heatmap.reshape(len(ncut_images), h, w)
mask = heatmap > threshold
return mask
positive_masks, negative_masks = [], []
for rgb, is_positive in rgbs:
rgb = torch.tensor(rgb).float() / 255
distance = (ncut_pixels - rgb[None]).norm(dim=-1)
distance = distance.squeeze(-1)
if is_positive:
positive_masks.append(to_mask(distance, distance_threshold, fg_contrast))
else:
negative_masks.append(to_mask(distance, negative_distance_threshold, bg_contrast))
if len(positive_masks) == 0:
raise gr.Error("No prompt points. Please draw some points on the image.")
positive_masks = torch.stack(positive_masks)
positive_mask = positive_masks.any(dim=0)
if len(negative_masks) > 0:
negative_masks = torch.stack(negative_masks)
negative_mask = negative_masks.any(dim=0)
positive_mask = positive_mask & ~negative_mask
# convert to PIL
mask = positive_mask.cpu().numpy()
mask = mask.astype(np.uint8) * 255
import cv2
def get_bboxes_and_clean_mask(mask, min_area=500):
"""
Args:
- mask: A numpy image of a binary mask with 255 for the object and 0 for the background.
- min_area: Minimum area for a connected component to be considered valid (default 500).
Returns:
- bounding_boxes: List of bounding boxes for valid objects (x, y, width, height).
- cleaned_pil_mask: A Pillow image of the cleaned mask, with small components removed.
"""
# Ensure the mask is binary (0 or 255)
mask = np.where(mask > 127, 255, 0).astype(np.uint8)
# Remove small noise using morphological operations (denoising)
kernel = np.ones((5, 5), np.uint8)
cleaned_mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
# Find connected components in the cleaned mask
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(cleaned_mask, connectivity=8)
# Initialize an empty mask to store the final cleaned mask
final_cleaned_mask = np.zeros_like(cleaned_mask)
# Collect bounding boxes for components that are larger than the threshold and update the cleaned mask
bounding_boxes = []
for i in range(1, num_labels): # Skip label 0 (background)
x, y, w, h, area = stats[i]
if area >= min_area:
# Add the bounding box of the valid component
bounding_boxes.append((x, y, w, h))
# Keep the valid components in the final cleaned mask
final_cleaned_mask[labels == i] = 255
# Convert the final cleaned mask back to a Pillow image
cleaned_pil_mask = Image.fromarray(final_cleaned_mask)
return bounding_boxes, cleaned_pil_mask
bboxs, filtered_masks = zip(*[get_bboxes_and_clean_mask(_mask) for _mask in mask])
original_images = [image[0] for image in original_images]
if isinstance(original_images[0], str):
original_images = [Image.open(image) for image in original_images]
# combine the masks, also draw the bounding boxes
combined_masks = []
for i_image in range(len(mask)):
noisy_mask = np.array(mask[i_image])
bbox = bboxs[i_image]
clean_mask = np.array(filtered_masks[i_image])
combined_mask = noisy_mask * 0.4 + clean_mask
combined_mask = np.clip(combined_mask, 0, 255).astype(np.uint8)
if overlay_image:
# add empty red and green channel
combined_mask = np.stack([np.zeros_like(combined_mask), np.zeros_like(combined_mask), combined_mask], axis=-1)
_image = original_images[i_image].convert("RGB").resize((combined_mask.shape[1], combined_mask.shape[0]))
_image = np.array(_image)
combined_mask = 0.5 * combined_mask + 0.5 * _image
combined_mask = np.clip(combined_mask, 0, 255).astype(np.uint8)
for x, y, w, h in bbox:
cv2.rectangle(combined_mask, (x-1, y-1), (x + w+2, y + h+2), (255, 0, 0), 2)
combined_mask = Image.fromarray(combined_mask)
combined_masks.append(combined_mask)
def extend_the_mask(xywh, factor=1.5):
x, y, w, h = xywh
x -= w * (factor - 1) / 2
y -= h * (factor - 1) / 2
w *= factor
h *= factor
return x, y, w, h
def resize_the_mask(xywh, original_size, target_size):
x, y, w, h = xywh
x *= target_size[0] / original_size[0]
y *= target_size[1] / original_size[1]
w *= target_size[0] / original_size[0]
h *= target_size[1] / original_size[1]
x, y, w, h = int(x), int(y), int(w), int(h)
return x, y, w, h
def crop_image(image, xywh, mask_h, mask_w, factor=1.0):
x, y, w, h = xywh
x, y, w, h = resize_the_mask((x, y, w, h), (mask_h, mask_w), image.size)
_x, _y, _w, _h = extend_the_mask((x, y, w, h), factor=factor)
crop = image.crop((_x, _y, _x + _w, _y + _h))
return crop
mask_h, mask_w = filtered_masks[0].size
cropped_images = []
for _image, _bboxs in zip(original_images, bboxs):
for _bbox in _bboxs:
cropped_images.append(crop_image(_image, _bbox, mask_h, mask_w, factor=crop_expand))
return combined_masks, cropped_images
run_crop_button.click(run_crop,
inputs=[input_gallery, output_gallery, prompt_image1, prompt_image2, prompt_image3, image1_slider, image2_slider, image3_slider,
crop_expand_slider, distance_threshold_slider, distance_power_slider,
area_threshold_slider, overlay_image_checkbox, negative_distance_threshold_slider,
fg_contrast_slider, bg_contrast_slider],
outputs=[mask_gallery, crop_gallery])
with gr.Tab('PlayGround (test)', visible=False) as test_playground_tab:
eigvecs = gr.State(torch.tensor([]))
with gr.Row():
with gr.Column(scale=5, min_width=200):
gr.Markdown("### Step 1: Load Images and Run NCUT")
input_gallery, submit_button, clear_images_button, dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_input_images_section(n_example_images=10)
# submit_button.visible = False
num_images_slider.value = 30
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown, ncut_metric_dropdown, positive_prompt, negative_prompt
] = make_parameters_section(parameter_dropdown=False)
num_eig_slider.value = 1000
num_eig_slider.visible = False
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False)
false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False)
no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False)
submit_button.click(
partial(run_fn, n_ret=1, only_eigvecs=True),
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
positive_prompt, negative_prompt,
false_placeholder, no_prompt, no_prompt, no_prompt,
affinity_focal_gamma_slider, num_sample_ncut_slider, ncut_knn_slider, ncut_indirect_connection, ncut_make_orthogonal,
embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, ncut_metric_dropdown
],
outputs=[eigvecs, logging_text],
)
with gr.Column(scale=5, min_width=200):
gr.Markdown("### Step 2a: Pick an Image")
from gradio_image_prompter import ImagePrompter
with gr.Row():
image1_slider = gr.Slider(0, 100, step=1, label="Image#1 Index", value=0, elem_id="image1_slider", interactive=True)
load_one_image_button = gr.Button("🔴 Load", elem_id="load_one_image_button", variant='primary')
gr.Markdown("### Step 2b: Draw a Point")
gr.Markdown("""
<h5>
🖱️ Left Click: Foreground </br>
</h5>
""")
prompt_image1 = ImagePrompter(show_label=False, elem_id="prompt_image1", interactive=False)
def update_prompt_image(original_images, index):
images = original_images
if images is None:
return
total_len = len(images)
if total_len == 0:
return
if index >= total_len:
index = total_len - 1
return ImagePrompter(value={'image': images[index][0], 'points': []}, interactive=True)
# return gr.Image(value=images[index][0], elem_id=f"prompt_image{randint}", interactive=True)
load_one_image_button.click(update_prompt_image, inputs=[input_gallery, image1_slider], outputs=[prompt_image1])
child_idx = gr.State([])
current_idx = gr.State(None)
n_eig = gr.State(64)
with gr.Column(scale=5, min_width=200):
gr.Markdown("### Step 3: Check groupping")
child_distance_slider = gr.Slider(0, 0.5, step=0.001, label="Child Distance", value=0.1, elem_id="child_distance_slider", interactive=True)
overlay_image_checkbox = gr.Checkbox(label="Overlay Image", value=True, elem_id="overlay_image_checkbox", interactive=True)
run_button = gr.Button("🔴 RUN", elem_id="run_groupping", variant='primary')
parent_plot = gr.Gallery(value=None, label="Parent", show_label=True, elem_id="parent_plot", interactive=False, rows=[1], columns=[2])
parent_button = gr.Button("Use Parent", elem_id="run_parent")
current_plot = gr.Gallery(value=None, label="Current", show_label=True, elem_id="current_plot", interactive=False, rows=[1], columns=[2])
with gr.Column(scale=5, min_width=200):
child_plots = []
child_buttons = []
for i in range(4):
child_plots.append(gr.Gallery(value=None, label=f"Child {i}", show_label=True, elem_id=f"child_plot_{i}", interactive=False, rows=[1], columns=[2]))
child_buttons.append(gr.Button(f"Use Child {i}", elem_id=f"run_child_{i}"))
def relative_xy(prompts):
image = prompts['image']
points = np.asarray(prompts['points'])
if points.shape[0] == 0:
return [], []
is_point = points[:, 5] == 4.0
points = points[is_point]
is_positive = points[:, 2] == 1.0
is_negative = points[:, 2] == 0.0
xy = points[:, :2].tolist()
if isinstance(image, str):
image = Image.open(image)
image = np.array(image)
h, w = image.shape[:2]
new_xy = [(x/w, y/h) for x, y in xy]
# print(new_xy)
return new_xy, is_positive
def xy_eigvec(prompts, image_idx, eigvecs):
eigvec = eigvecs[image_idx]
xy, is_positive = relative_xy(prompts)
for i, (x, y) in enumerate(xy):
if not is_positive[i]:
continue
x = int(x * eigvec.shape[1])
y = int(y * eigvec.shape[0])
return eigvec[y, x], (y, x)
from ncut_pytorch.ncut_pytorch import _transform_heatmap
def _run_heatmap_fn(images, eigvecs, prompt_image_idx, prompt_points, n_eig, flat_idx=None, raw_heatmap=False, overlay_image=True):
left = eigvecs[..., :n_eig]
if flat_idx is not None:
right = eigvecs.reshape(-1, eigvecs.shape[-1])[flat_idx]
y, x = None, None
else:
right, (y, x) = xy_eigvec(prompt_points, prompt_image_idx, eigvecs)
right = right[:n_eig]
left = F.normalize(left, p=2, dim=1)
_right = F.normalize(right, p=2, dim=0)
heatmap = left @ _right.unsqueeze(-1)
heatmap = heatmap.squeeze(-1)
heatmap = 1 - heatmap
heatmap = _transform_heatmap(heatmap)
if raw_heatmap:
return heatmap
# apply hot colormap and covert to PIL image 256x256
heatmap = heatmap.cpu().numpy()
hot_map = matplotlib.cm.get_cmap('hot')
heatmap = hot_map(heatmap)
pil_images = to_pil_images(torch.tensor(heatmap), target_size=256, force_size=True)
if overlay_image:
overlaied_images = []
for i_image in range(len(images)):
rgb_image = images[i_image].resize((256, 256))
rgb_image = np.array(rgb_image)
heatmap_image = np.array(pil_images[i_image])[..., :3]
blend_image = 0.5 * rgb_image + 0.5 * heatmap_image
blend_image = Image.fromarray(blend_image.astype(np.uint8))
overlaied_images.append(blend_image)
pil_images = overlaied_images
return pil_images, (y, x)
def farthest_point_sampling(
features,
start_feature,
num_sample=300,
h=9,
):
import fpsample
h = min(h, int(np.log2(features.shape[0])))
inp = features.cpu().numpy()
inp = np.concatenate([inp, start_feature[None, :]], axis=0)
kdline_fps_samples_idx = fpsample.bucket_fps_kdline_sampling(
inp, num_sample, h, start_idx=inp.shape[0] - 1
).astype(np.int64)
return kdline_fps_samples_idx
@torch.no_grad()
def run_heatmap(images, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, flat_idx=None, overlay_image=True):
gr.Info(f"current number of eigenvectors: {n_eig}")
images = [image[0] for image in images]
if isinstance(images[0], str):
images = [Image.open(image[0]).convert("RGB").resize((256, 256)) for image in images]
current_heatmap, (y, x) = _run_heatmap_fn(images, eigvecs, image1_slider, prompt_image1, n_eig, flat_idx, overlay_image=overlay_image)
parent_heatmap, _ = _run_heatmap_fn(images, eigvecs, image1_slider, prompt_image1, int(n_eig/2), flat_idx, overlay_image=overlay_image)
# find childs
# pca_eigvecs
_eigvecs = eigvecs.reshape(-1, eigvecs.shape[-1])
u, s, v = torch.pca_lowrank(_eigvecs, q=8)
_n = _eigvecs.shape[0]
s /= math.sqrt(_n)
_eigvecs = u @ torch.diag(s)
if flat_idx is None:
_picked_eigvec = _eigvecs.reshape(*eigvecs.shape[:-1], 8)[image1_slider, y, x]
else:
_picked_eigvec = _eigvecs[flat_idx]
l2_distance = torch.norm(_eigvecs - _picked_eigvec, dim=-1)
average_distance = l2_distance.mean()
distance_threshold = distance_slider * average_distance
distance_mask = l2_distance < distance_threshold
masked_eigvecs = _eigvecs[distance_mask]
num_childs = min(4, masked_eigvecs.shape[0])
assert num_childs > 0
child_idx = farthest_point_sampling(masked_eigvecs, _picked_eigvec, num_sample=num_childs+1)
child_idx = np.sort(child_idx)[:-1]
# convert child_idx to flat_idx
dummy_idx = torch.zeros(_eigvecs.shape[0], dtype=torch.bool)
dummy_idx2 = torch.zeros(int(distance_mask.sum().item()), dtype=torch.bool)
dummy_idx2[child_idx] = True
dummy_idx[distance_mask] = dummy_idx2
child_idx = torch.where(dummy_idx)[0]
# current_child heatmap, for contrast
current_child_heatmap = _run_heatmap_fn(images,eigvecs, image1_slider, prompt_image1, int(n_eig*2), flat_idx, raw_heatmap=True, overlay_image=overlay_image)
# child_heatmaps, contrast mean of current clicked point
child_heatmaps = []
for idx in child_idx:
child_heatmap = _run_heatmap_fn(images,eigvecs, image1_slider, prompt_image1, int(n_eig*2), idx, raw_heatmap=True, overlay_image=overlay_image)
heatmap = child_heatmap - current_child_heatmap
# convert [-1, 1] to [0, 1]
heatmap = (heatmap + 1) / 2
heatmap = heatmap.cpu().numpy()
cm = matplotlib.cm.get_cmap('bwr')
heatmap = cm(heatmap)
# bwr with contrast
pil_images1 = to_pil_images(torch.tensor(heatmap), resize=256)
# no contrast
pil_images2, _ = _run_heatmap_fn(images, eigvecs, image1_slider, prompt_image1, int(n_eig*2), idx, overlay_image=overlay_image)
# combine contrast and no contrast
pil_images = []
for i in range(len(pil_images1)):
pil_images.append(pil_images2[i])
pil_images.append(pil_images1[i])
child_heatmaps.append(pil_images)
return parent_heatmap, current_heatmap, *child_heatmaps, child_idx.tolist()
# def debug_fn(eigvecs):
# shape = eigvecs.shape
# gr.Info(f"eigvecs shape: {shape}")
# run_button.click(
# debug_fn,
# inputs=[eigvecs],
# outputs=[],
# )
none_placeholder = gr.State(None)
run_button.click(
run_heatmap,
inputs=[input_gallery, eigvecs, image1_slider, prompt_image1, n_eig, child_distance_slider, none_placeholder, overlay_image_checkbox],
outputs=[parent_plot, current_plot, *child_plots, child_idx],
)
def run_paraent(input_gallery, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, current_idx=None, overlay_image=True):
n_eig = int(n_eig/2)
return n_eig, *run_heatmap(input_gallery, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, current_idx, overlay_image)
parent_button.click(
run_paraent,
inputs=[input_gallery, eigvecs, image1_slider, prompt_image1, n_eig, child_distance_slider, current_idx, overlay_image_checkbox],
outputs=[n_eig, parent_plot, current_plot, *child_plots, child_idx],
)
def run_child(input_gallery, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, child_idx=[], overlay_image=True, i_child=0):
n_eig = int(n_eig*2)
flat_idx = child_idx[i_child]
return n_eig, flat_idx, *run_heatmap(input_gallery, eigvecs, image1_slider, prompt_image1, n_eig, distance_slider, flat_idx, overlay_image)
for i in range(4):
child_buttons[i].click(
partial(run_child, i_child=i),
inputs=[input_gallery, eigvecs, image1_slider, prompt_image1, n_eig, child_distance_slider, child_idx, overlay_image_checkbox],
outputs=[n_eig, current_idx, parent_plot, current_plot, *child_plots, child_idx],
)
with gr.Tab('📄About'):
with gr.Column():
gr.Markdown("**This demo is for Python package `ncut-pytorch`, please visit the [Documentation](https://ncut-pytorch.readthedocs.io/)**")
gr.Markdown("**All the models and functions used for this demo are in the Python package `ncut-pytorch`**")
gr.Markdown("---")
gr.Markdown("---")
gr.Markdown("**Normalized Cuts**, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.")
gr.Markdown("*Normalized Cuts and Image Segmentation, Jianbo Shi and Jitendra Malik, 2000*")
gr.Markdown("---")
gr.Markdown("**We have improved NCut, with some advanced features:**")
gr.Markdown("- **Nyström** Normalized Cut, is a new approximation algorithm developed for large-scale graph cuts, a large-graph of million nodes can be processed in under 10s (cpu) or 2s (gpu).")
gr.Markdown("- **spectral-tSNE** visualization, a new method to visualize the high-dimensional eigenvector space with 3D RGB cube. Color is aligned across images, color infers distance in representation.")
gr.Markdown("*paper in prep, Yang 2024*")
gr.Markdown("*AlignedCut: Visual Concepts Discovery on Brain-Guided Universal Feature Space, Huzheng Yang, James Gee\*, and Jianbo Shi\*, 2024*")
gr.Markdown("---")
gr.Markdown("---")
gr.Markdown('<p style="text-align: center;">We thank HuggingFace for hosting this demo.</p>')
# unlock the hidden tab
with gr.Row():
with gr.Column(scale=5):
gr.Markdown("")
with gr.Column(scale=5):
hidden_button = gr.Checkbox(label="🤗", value=False, elem_id="unlock_button", visible=True, interactive=True)
with gr.Column(scale=5):
gr.Markdown("")
n_smiles = gr.State(0)
unlock_value = 6
def update_smile(n_smiles):
n_smiles = n_smiles + 1
n_smiles = unlock_value if n_smiles > unlock_value else n_smiles
if n_smiles == unlock_value - 2:
gr.Info("click one more time to unlock", 2)
if n_smiles == unlock_value:
label = "🔓 unlocked"
return n_smiles, gr.update(label=label, value=True, interactive=False)
label = ["😊"] * n_smiles
label = "".join(label)
return n_smiles, gr.update(label=label, value=False)
def unlock_tabs_with_info(n_smiles):
if n_smiles == unlock_value:
gr.Info("🔓 unlocked tabs", 2)
return gr.update(visible=True)
return gr.update()
def unlock_tabs(n_smiles):
if n_smiles == unlock_value:
return gr.update(visible=True)
return gr.update()
hidden_button.change(update_smile, [n_smiles], [n_smiles, hidden_button])
hidden_button.change(unlock_tabs_with_info, n_smiles, tab_alignedcut_advanced)
hidden_button.change(unlock_tabs, n_smiles, tab_model_aligned_advanced)
hidden_button.change(unlock_tabs, n_smiles, tab_recursivecut_advanced)
hidden_button.change(unlock_tabs, n_smiles, tab_compare_models_advanced)
hidden_button.change(unlock_tabs, n_smiles, tab_directed_ncut)
hidden_button.change(unlock_tabs, n_smiles, test_playground_tab)
# with gr.Row():
# with gr.Column():
# gr.Markdown("##### This demo is for `ncut-pytorch`, [Documentation](https://ncut-pytorch.readthedocs.io/) ")
# with gr.Column():
# gr.Markdown("###### Running out of GPU Quota? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn")
with gr.Row():
gr.Markdown("**This demo is for Python package `ncut-pytorch`, [Documentation](https://ncut-pytorch.readthedocs.io/)**")
# for local development
if os.path.exists("/hf_token.txt"):
os.environ["HF_ACCESS_TOKEN"] = open("/hf_token.txt").read().strip()
if DOWNLOAD_ALL_MODELS_DATASETS:
from ncut_pytorch.backbone import download_all_models
# t1 = threading.Thread(target=download_all_models).start()
# t1.join()
# t3 = threading.Thread(target=download_all_datasets).start()
# t3.join()
download_all_models()
download_all_datasets()
from ncut_pytorch.backbone_text import download_all_models
# t2 = threading.Thread(target=download_all_models).start()
# t2.join()
download_all_models()
demo.launch(share=True)
# # %%
# # debug
# # change working directory to "/"
# os.chdir("/")
# images = [(Image.open(image), None) for image in default_images]
# ret = run_fn(images, num_eig=30)
# # %%
# %%
# %%
# %%
# %%
# %%
# %%
|