Spaces:
Runtime error
Runtime error
File size: 6,586 Bytes
babca6f dc9cf4c cbe4d4c c8e54ed 1ae8e53 ff14337 218afdc 87e9ad0 ff14337 df85058 ff14337 53eb88c 28ff844 ff14337 df85058 a94b06f df85058 61fa7d4 34bf2a6 61fa7d4 4b9eea9 df85058 0c5e4a4 ed2f0b8 b9a0cdb c8e54ed 218afdc c8e54ed bbd3701 2cadcf2 f10b2fa 6bfef5d 395d676 ed2f0b8 8c28395 218afdc 8c28395 218afdc 395d676 73d041b 395d676 b31f1e8 0c5e4a4 218afdc 395d676 b9a0cdb 395d676 b9a0cdb 395d676 6615174 ff14337 7a481f6 187b547 bb7f792 187b547 bb7f792 7a481f6 187b547 9bae889 ff14337 6615174 ff14337 789fd51 ff14337 be06195 ff14337 395d676 ff14337 33b1b5b 53eb88c 187b547 218afdc 33b1b5b ca7ae8f 335e90e 33b1b5b 218afdc 30dbd25 c8e54ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import os
os.system("pip install git+https://github.com/openai/whisper.git")
import whisper
import evaluate
from evaluate.utils import launch_gradio_widget
import gradio as gr
import torch
import classify
import replace_explitives
from whisper.model import Whisper
from whisper.tokenizer import get_tokenizer
from speechbrain.pretrained.interfaces import foreign_class
from transformers import AutoModelForSequenceClassification, pipeline, WhisperTokenizer, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
# pull in emotion detection
# --- Add element for specification
# pull in text classification
# --- Add custom labels
# --- Associate labels with radio elements
# add logic to initiate mock notificaiton when detected
# pull in misophonia-specific model
model_cache = {}
# Building prediction function for gradio
emo_dict = {
'sad': 'Sad',
'hap': 'Happy',
'ang': 'Anger',
'neu': 'Neutral'
}
# static classes for now, but it would be best ot have the user select from multiple, and to enter their own
class_options = {
"racism": ["racism", "hate speech", "bigotry", "racially targeted", "racially diminutive", "racial slur", "ethnic slur", "ethnic hate", "pro-white nationalism"],
"LGBTQ+ hate": ["gay slur", "trans slur", "homophobic slur", "transphobia", "anti-LBGTQ+", "hate speech"],
"sexually explicit": ["sexually explicit", "sexually coercive", "sexual exploitation", "vulgar", "raunchy", "sexually demeaning", "sexual violence", "victim blaming"],
"misophonia": ["chewing", "breathing", "mouthsounds", "popping", "sneezing", "yawning", "smacking", "sniffling", "panting"]
}
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
def classify_emotion(audio):
#### Emotion classification ####
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
out_prob, score, index, text_lab = emotion_classifier.classify_file(audio)
return emo_dict[text_lab[0]]
# Create a Gradio interface with audio file and text inputs
def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, explitive_selection):
# Transcribe the audio file using Whisper ASR
if audio_file != None:
transcribed_text = pipe(audio_file)["text"]
else:
transcribed_text = text_input
if classify_anxiety != "misophonia":
print("emo_class ", emo_class, "explitive select", explitive_selection)
# explitive call
if replace_explitives != None and emo_class != None:
transcribed_text = replace_explitives.sub_explitives(transcribed_text, explitive_selection)
#### Toxicity Classifier ####
toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
#toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
toxicity_score = toxicity_results["toxicity"][0]
print(toxicity_score)
# emo call
if emo_class != None:
classify_emotion(audio_file)
#### Text classification #####
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
sequence_to_classify = transcribed_text
print(classify_anxiety, class_options)
candidate_labels = class_options.get(classify_anxiety, [])
# classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=True)
print(classification_output)
return toxicity_score, classification_output, transcribed_text
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
else:
model = whisper.load_model("large")
# model = model_cache[model_name]
# class_names = classify_anxiety.split(",")
class_names_list = class_options.get(classify_anxiety, [])
class_str = ""
for elm in class_names_list:
class_str += elm + ","
#class_names = class_names_temp.split(",")
class_names = class_str.split(",")
print("class names ", class_names, "classify_anxiety ", classify_anxiety)
tokenizer = get_tokenizer("large")
# tokenizer= WhisperTokenizer.from_pretrained("openai/whisper-large")
internal_lm_average_logprobs = classify.calculate_internal_lm_average_logprobs(
model=model,
class_names=class_names,
# class_names=classify_anxiety,
tokenizer=tokenizer,
)
audio_features = classify.calculate_audio_features(audio_file, model)
average_logprobs = classify.calculate_average_logprobs(
model=model,
audio_features=audio_features,
class_names=class_names,
tokenizer=tokenizer,
)
average_logprobs -= internal_lm_average_logprobs
scores = average_logprobs.softmax(-1).tolist()
return {class_name: score for class_name, score in zip(class_names, scores)}
return classify_anxiety
with gr.Blocks() as iface:
with gr.Column():
anxiety_class = gr.Radio(["racism", "LGBTQ+ hate", "sexually explicit", "misophonia"])
explit_preference = gr.Radio(choices=["N-Word", "B-Word", "All Explitives"], label="Words to omit from general anxiety classes", info="certain words may be acceptible within certain contects for given groups of people, and some people may be unbothered by explitives broadly speaking.")
emo_class = gr.Radio(choices=["negaitve emotionality"], label="label", info="Select if you would like explitives to be considered anxiety-indiucing in the case of anger/ negative emotionality.")
with gr.Column():
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
submit_btn = gr.Button(label="Run")
with gr.Column():
out_text = gr.Textbox()
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference], outputs=out_text)
iface.launch() |