mskov commited on
Commit
c8e54ed
·
1 Parent(s): a508b7a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -2
app.py CHANGED
@@ -1,5 +1,43 @@
1
  import evaluate
2
  from evaluate.utils import launch_gradio_widget
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- module = evaluate.load("toxicity")
5
- launch_gradio_widget(module)
 
1
  import evaluate
2
  from evaluate.utils import launch_gradio_widget
3
+ import gradio as gr
4
+ from transformers import AutoModelForSequenceClassification, pipeline, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
5
+
6
+
7
+ # Define the list of available models
8
+ available_models = {
9
+ "mskov/roberta-base-toxicity": "Roberta Finetuned Model"
10
+ }
11
+
12
+
13
+ # Create a Gradio interface with audio file and text inputs
14
+ def classify_toxicity(audio_file, text_input, selected_model):
15
+ # Transcribe the audio file using Whisper ASR
16
+ whisper_module = evaluate.load("whisper")
17
+ transcription_results = whisper_module.compute(uploaded=audio_file)
18
+
19
+ # Extract the transcribed text
20
+ transcribed_text = transcription_results["transcription"]
21
+
22
+ # Load the selected toxicity classification model
23
+ toxicity_module = evaluate.load("toxicity", selected_model)
24
+ toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
25
+
26
+ toxicity_score = toxicity_results["toxicity"][0]
27
+
28
+ return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
29
+
30
+ iface = gr.Interface(
31
+ fn=classify_toxicity,
32
+ inputs=[
33
+ gr.Audio(source="upload", type="file", label="Upload Audio File (Optional)"),
34
+ "text",
35
+ gr.Radio(available_models, type="value", label="Select Model")
36
+ ],
37
+ outputs="text",
38
+ live=True,
39
+ title="Toxicity Classifier with ASR",
40
+ description="Upload an audio file or enter text to classify its toxicity using the selected model.",
41
+ )
42
 
43
+ iface.launch()