mskov commited on
Commit
b31f1e8
·
1 Parent(s): b9a0cdb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -44,7 +44,8 @@ def classify_emotion():
44
  #### Emotion classification ####
45
  emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
46
  out_prob, score, index, text_lab = emotion_classifier.classify_file(audio_file)
47
- return emo_dict[text_lab[0]]
 
48
 
49
  # Create a Gradio interface with audio file and text inputs
50
  def classify_toxicity(audio_file, text_input, classify_anxiety):
@@ -64,7 +65,9 @@ def classify_toxicity(audio_file, text_input, classify_anxiety):
64
 
65
  toxicity_score = toxicity_results["toxicity"][0]
66
  print(toxicity_score)
67
-
 
 
68
  #### Text classification #####
69
 
70
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
@@ -118,12 +121,13 @@ def classify_toxicity(audio_file, text_input, classify_anxiety):
118
  with gr.Blocks() as iface:
119
  with gr.Column():
120
  anxiety_class = gr.Radio(["racism", "LGBTQ+ hate", "sexually explicit", "misophonia"])
 
121
  with gr.Column():
122
  aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
123
  text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
124
  submit_btn = gr.Button(label="Run")
125
  with gr.Column():
126
  out_text = gr.Textbox()
127
- submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class], outputs=out_text)
128
 
129
  iface.launch()
 
44
  #### Emotion classification ####
45
  emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
46
  out_prob, score, index, text_lab = emotion_classifier.classify_file(audio_file)
47
+ emostr = "emo class"
48
+ return emo_dict[text_lab[0]], emostr
49
 
50
  # Create a Gradio interface with audio file and text inputs
51
  def classify_toxicity(audio_file, text_input, classify_anxiety):
 
65
 
66
  toxicity_score = toxicity_results["toxicity"][0]
67
  print(toxicity_score)
68
+ # emo call
69
+ if emo_class != None:
70
+ classify_emotion()
71
  #### Text classification #####
72
 
73
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
 
121
  with gr.Blocks() as iface:
122
  with gr.Column():
123
  anxiety_class = gr.Radio(["racism", "LGBTQ+ hate", "sexually explicit", "misophonia"])
124
+ emo_class = gr.Radio(choices=["negaitve emotionality"], label="label", info="info")
125
  with gr.Column():
126
  aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
127
  text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
128
  submit_btn = gr.Button(label="Run")
129
  with gr.Column():
130
  out_text = gr.Textbox()
131
+ submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class], outputs=out_text)
132
 
133
  iface.launch()