Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -40,15 +40,17 @@ class_options = {
|
|
40 |
|
41 |
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# Create a Gradio interface with audio file and text inputs
|
44 |
def classify_toxicity(audio_file, text_input, classify_anxiety):
|
45 |
# Transcribe the audio file using Whisper ASR
|
46 |
if audio_file != None:
|
47 |
transcribed_text = pipe(audio_file)["text"]
|
48 |
-
|
49 |
-
#### Emotion classification ####
|
50 |
-
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
|
51 |
-
out_prob, score, index, text_lab = emotion_classifier.classify_file(audio_file)
|
52 |
|
53 |
else:
|
54 |
transcribed_text = text_input
|
@@ -75,13 +77,9 @@ def classify_toxicity(audio_file, text_input, classify_anxiety):
|
|
75 |
# classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
76 |
classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=True)
|
77 |
print(classification_output)
|
78 |
-
|
79 |
-
#### Emotion classification ####
|
80 |
-
|
81 |
-
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
|
82 |
-
out_prob, score, index, text_lab = emotion_classifier.classify_file(audio_file)
|
83 |
|
84 |
-
return toxicity_score, classification_output,
|
85 |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|
86 |
else:
|
87 |
model = whisper.load_model("large")
|
|
|
40 |
|
41 |
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
|
42 |
|
43 |
+
def classify_emotion():
|
44 |
+
#### Emotion classification ####
|
45 |
+
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
|
46 |
+
out_prob, score, index, text_lab = emotion_classifier.classify_file(audio_file)
|
47 |
+
return emo_dict[text_lab[0]]
|
48 |
+
|
49 |
# Create a Gradio interface with audio file and text inputs
|
50 |
def classify_toxicity(audio_file, text_input, classify_anxiety):
|
51 |
# Transcribe the audio file using Whisper ASR
|
52 |
if audio_file != None:
|
53 |
transcribed_text = pipe(audio_file)["text"]
|
|
|
|
|
|
|
|
|
54 |
|
55 |
else:
|
56 |
transcribed_text = text_input
|
|
|
77 |
# classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
78 |
classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=True)
|
79 |
print(classification_output)
|
80 |
+
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
return toxicity_score, classification_output, transcribed_text
|
83 |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|
84 |
else:
|
85 |
model = whisper.load_model("large")
|