mskov commited on
Commit
218afdc
·
1 Parent(s): 18a25c3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -3
app.py CHANGED
@@ -6,6 +6,7 @@ from evaluate.utils import launch_gradio_widget
6
  import gradio as gr
7
  import torch
8
  import classify
 
9
  from whisper.model import Whisper
10
  from whisper.tokenizer import get_tokenizer
11
  from speechbrain.pretrained.interfaces import foreign_class
@@ -48,7 +49,7 @@ def classify_emotion(audio):
48
  return emo_dict[text_lab[0]], emostr
49
 
50
  # Create a Gradio interface with audio file and text inputs
51
- def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class):
52
  # Transcribe the audio file using Whisper ASR
53
  if audio_file != None:
54
  transcribed_text = pipe(audio_file)["text"]
@@ -56,6 +57,10 @@ def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class):
56
  else:
57
  transcribed_text = text_input
58
  if classify_anxiety != "misophonia":
 
 
 
 
59
  #### Toxicity Classifier ####
60
 
61
  toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
@@ -68,6 +73,7 @@ def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class):
68
  # emo call
69
  if emo_class != None:
70
  classify_emotion(audio_file)
 
71
  #### Text classification #####
72
 
73
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
@@ -121,13 +127,14 @@ def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class):
121
  with gr.Blocks() as iface:
122
  with gr.Column():
123
  anxiety_class = gr.Radio(["racism", "LGBTQ+ hate", "sexually explicit", "misophonia"])
124
- emo_class = gr.Radio(choices=["negaitve emotionality"], label="label", info="info")
 
125
  with gr.Column():
126
  aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
127
  text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
128
  submit_btn = gr.Button(label="Run")
129
  with gr.Column():
130
  out_text = gr.Textbox()
131
- submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class], outputs=out_text)
132
 
133
  iface.launch()
 
6
  import gradio as gr
7
  import torch
8
  import classify
9
+ import replace_explitives
10
  from whisper.model import Whisper
11
  from whisper.tokenizer import get_tokenizer
12
  from speechbrain.pretrained.interfaces import foreign_class
 
49
  return emo_dict[text_lab[0]], emostr
50
 
51
  # Create a Gradio interface with audio file and text inputs
52
+ def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, explitive_selection):
53
  # Transcribe the audio file using Whisper ASR
54
  if audio_file != None:
55
  transcribed_text = pipe(audio_file)["text"]
 
57
  else:
58
  transcribed_text = text_input
59
  if classify_anxiety != "misophonia":
60
+ # explitive call
61
+ if replace_explitives != None && emo_class == None:
62
+ transcribed_text = replace_explitives.sub_explitives(transcribed_text, explitive_selection)
63
+
64
  #### Toxicity Classifier ####
65
 
66
  toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
 
73
  # emo call
74
  if emo_class != None:
75
  classify_emotion(audio_file)
76
+
77
  #### Text classification #####
78
 
79
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
 
127
  with gr.Blocks() as iface:
128
  with gr.Column():
129
  anxiety_class = gr.Radio(["racism", "LGBTQ+ hate", "sexually explicit", "misophonia"])
130
+ explit_preference = gr.Radio(choices=["N-Word", "B-Word", "All Explitives"], label="Words to omit from general anxiety classes", info="certain words may be acceptible within certain contects for given groups of people, and some people may be unbothered by explitives broadly speaking.")
131
+ emo_class = gr.Radio(choices=["negaitve emotionality"], label="label", info="Select if you would like explitives to be considered anxiety-indiucing in the case of anger/ negative emotionality.")
132
  with gr.Column():
133
  aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
134
  text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
135
  submit_btn = gr.Button(label="Run")
136
  with gr.Column():
137
  out_text = gr.Textbox()
138
+ submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference], outputs=out_text)
139
 
140
  iface.launch()