mskov commited on
Commit
395d676
·
1 Parent(s): e015d80

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -30
app.py CHANGED
@@ -44,37 +44,39 @@ def classify_toxicity(audio_file, text_input, classify_anxiety):
44
 
45
  else:
46
  transcribed_text = text_input
47
- print("classify anxiety ", classify_anxiety)
48
- #### Toxicity Classifier ####
49
-
50
- toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
51
- #toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
52
-
53
- toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
54
-
55
- toxicity_score = toxicity_results["toxicity"][0]
56
- print(toxicity_score)
57
-
58
- #### Text classification #####
59
-
60
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
61
-
62
- text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
63
-
64
- sequence_to_classify = transcribed_text
65
- print(classify_anxiety, class_options)
66
- candidate_labels = class_options.get(classify_anxiety, [])
67
- # classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
68
- classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=True)
69
- print(classification_output)
70
-
71
- #### Emotion classification ####
72
 
73
- emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
74
- out_prob, score, index, text_lab = emotion_classifier.classify_file(audio_file)
75
-
76
- return toxicity_score, classification_output, emo_dict[text_lab[0]], transcribed_text
77
- # return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
  with gr.Blocks() as iface:
80
  with gr.Column():
 
44
 
45
  else:
46
  transcribed_text = text_input
47
+ if classify_anxiety != "misophonia":
48
+ #### Toxicity Classifier ####
49
+
50
+ toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
51
+ #toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
54
+
55
+ toxicity_score = toxicity_results["toxicity"][0]
56
+ print(toxicity_score)
57
+
58
+ #### Text classification #####
59
+
60
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
61
+
62
+ text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
63
+
64
+ sequence_to_classify = transcribed_text
65
+ print(classify_anxiety, class_options)
66
+ candidate_labels = class_options.get(classify_anxiety, [])
67
+ # classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
68
+ classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=True)
69
+ print(classification_output)
70
+
71
+ #### Emotion classification ####
72
+
73
+ emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
74
+ out_prob, score, index, text_lab = emotion_classifier.classify_file(audio_file)
75
+
76
+ return toxicity_score, classification_output, emo_dict[text_lab[0]], transcribed_text
77
+ # return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
78
+ else:
79
+ return classify_anxiety
80
 
81
  with gr.Blocks() as iface:
82
  with gr.Column():