mskov commited on
Commit
73d041b
·
1 Parent(s): df85058

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -33,7 +33,8 @@ def classify_toxicity(audio_file, text_input, classify_anxiety):
33
  else:
34
  transcribed_text = text_input
35
 
36
- # Load the selected toxicity classification model
 
37
  toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
38
  #toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
39
 
@@ -42,18 +43,20 @@ def classify_toxicity(audio_file, text_input, classify_anxiety):
42
  toxicity_score = toxicity_results["toxicity"][0]
43
  print(toxicity_score)
44
 
45
- # Text classification
46
 
47
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
48
 
49
- classifiation_model = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
50
 
51
  sequence_to_classify = transcribed_text
52
  candidate_labels = classify_anxiety
53
- classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
 
54
  print(classification_output)
55
 
56
- # Emotion classification
 
57
  emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
58
  out_prob, score, index, text_lab = learner.classify_file(audio_file.name)
59
 
 
33
  else:
34
  transcribed_text = text_input
35
 
36
+ #### Toxicity Classifier ####
37
+
38
  toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
39
  #toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
40
 
 
43
  toxicity_score = toxicity_results["toxicity"][0]
44
  print(toxicity_score)
45
 
46
+ #### Text classification #####
47
 
48
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
49
 
50
+ text_classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
51
 
52
  sequence_to_classify = transcribed_text
53
  candidate_labels = classify_anxiety
54
+ # classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
55
+ classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=False)
56
  print(classification_output)
57
 
58
+ #### Emotion classification ####
59
+
60
  emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
61
  out_prob, score, index, text_lab = learner.classify_file(audio_file.name)
62