File size: 43,071 Bytes
86da6bf
 
3e06034
7a2c457
86da6bf
3e06034
88c1ef1
 
 
3e06034
7a2c457
86da6bf
68b0288
 
2b98806
7a2c457
2b98806
 
07462e7
6573567
9237b56
2b98806
be4c20b
 
86da6bf
2b98806
7a2c457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8898a47
 
 
 
2b98806
 
 
 
 
 
 
 
c320745
68b0288
 
 
c320745
86da6bf
5ca0c5b
1075d8a
edc0dc6
86da6bf
7311cdd
86da6bf
 
 
 
 
 
07462e7
2b98806
 
 
68b0288
2b98806
 
86da6bf
5ca0c5b
7a2c457
2b98806
edc0dc6
 
07462e7
 
86da6bf
 
 
 
 
 
 
 
 
 
 
 
7311cdd
5ca0c5b
2b98806
 
 
 
 
 
 
 
 
 
 
 
 
9e43ce3
 
 
 
2b98806
9e43ce3
2b98806
 
88c1ef1
2b98806
5ca0c5b
 
 
 
 
e85b6ae
5ca0c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e43ce3
bce60e0
9e43ce3
 
9cd819b
 
bce60e0
9cd819b
 
 
5ca0c5b
 
edc0dc6
7a2c457
2b98806
 
 
 
a48bd1b
2b98806
 
 
c320745
2b98806
 
 
c320745
 
86da6bf
88c1ef1
5ca0c5b
 
 
 
 
2b98806
edc0dc6
68b0288
2b98806
86da6bf
 
2b98806
68b0288
7a2c457
 
 
68b0288
 
7a2c457
07462e7
2b98806
be4c20b
2b98806
edc0dc6
 
07462e7
5ca0c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2c457
 
5ca0c5b
 
88c1ef1
 
 
 
 
5ca0c5b
88c1ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ca0c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b98806
86da6bf
 
09abd2f
 
 
 
86da6bf
 
7a2c457
 
86da6bf
8c6fc00
3e06034
24c1fd0
86da6bf
 
8c6fc00
86da6bf
 
 
d245991
86da6bf
 
 
 
 
 
 
 
3e06034
86da6bf
 
 
 
 
 
 
 
 
 
 
68b0288
5ca0c5b
 
 
 
 
 
 
 
 
 
 
 
 
7a2c457
 
 
 
 
 
 
 
 
8c6fc00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86da6bf
88c1ef1
5ca0c5b
 
 
 
 
8c6fc00
7a2c457
8c6fc00
5c1d3a1
40e33a1
8c6fc00
5ca0c5b
 
 
 
 
86da6bf
 
7a2c457
 
 
 
 
 
 
be4c20b
86da6bf
8c6fc00
 
 
 
 
 
 
 
 
 
 
 
 
 
86da6bf
88c1ef1
5ca0c5b
 
 
 
 
8c6fc00
e85b6ae
8c6fc00
 
7a2c457
e85b6ae
7a2c457
88c1ef1
7a2c457
507aec2
7a2c457
714612e
7a2c457
8c6fc00
d245991
7a2c457
 
d245991
 
7a2c457
 
d245991
7a2c457
68b0288
 
86da6bf
88c1ef1
 
5ca0c5b
9e43ce3
 
88c1ef1
 
5ca0c5b
9e43ce3
5ca0c5b
e85b6ae
 
 
9e43ce3
 
5ca0c5b
 
9e43ce3
88c1ef1
9e43ce3
 
 
 
 
 
7a2c457
 
8d1d2de
 
 
 
 
 
 
9e43ce3
 
 
 
 
 
 
 
 
 
 
 
7a2c457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6573567
7a2c457
 
 
 
 
 
9e43ce3
7a2c457
 
9e43ce3
 
 
86da6bf
5ca0c5b
88c1ef1
 
86da6bf
 
 
 
 
8898a47
7a2c457
4d58f0c
7a2c457
 
 
f5de82f
 
 
7a2c457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86da6bf
9e43ce3
88c1ef1
7a2c457
9e43ce3
 
7a2c457
 
 
 
9e43ce3
88c1ef1
 
 
f548a71
88c1ef1
 
 
7311cdd
8ef0473
be4c20b
8898a47
d73ecb9
88c1ef1
 
 
5c67556
7a2c457
 
 
f5de82f
 
5c67556
7a2c457
f5de82f
 
 
5c67556
5ca0c5b
7311cdd
5c67556
88c1ef1
5ca0c5b
88c1ef1
 
6573567
88c1ef1
6573567
 
88c1ef1
 
68b0288
 
88c1ef1
 
2b98806
07db945
 
00dc973
 
07db945
 
5ca0c5b
88c1ef1
 
 
 
9e43ce3
88c1ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9237b56
 
88c1ef1
 
e85b6ae
 
a29b195
88c1ef1
507aec2
 
88c1ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
a29b195
88c1ef1
 
 
 
 
9e43ce3
88c1ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9237b56
 
88c1ef1
5ca0c5b
 
 
 
 
 
 
 
 
 
8d1d2de
5ca0c5b
8d1d2de
5ca0c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d1d2de
5ca0c5b
 
 
 
 
 
 
 
 
 
9237b56
 
5ca0c5b
 
 
e85b6ae
5ca0c5b
 
9e43ce3
5ca0c5b
e85b6ae
5ca0c5b
 
 
 
 
 
 
 
 
 
 
 
 
9e43ce3
5ca0c5b
 
 
 
 
e85b6ae
5ca0c5b
 
 
 
 
9237b56
 
5ca0c5b
 
e85b6ae
7311cdd
 
 
 
 
 
9e43ce3
7a2c457
 
d73ecb9
7a2c457
9e43ce3
7a2c457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e85b6ae
 
 
 
7a2c457
e85b6ae
9e43ce3
7a2c457
e85b6ae
d73ecb9
 
7a2c457
d73ecb9
 
 
7a2c457
d73ecb9
 
 
 
 
 
 
 
e85b6ae
9e43ce3
d73ecb9
e85b6ae
d73ecb9
 
 
 
 
 
 
 
 
 
 
 
 
 
3e06034
7311cdd
 
 
6573567
7311cdd
6573567
d73ecb9
 
 
86da6bf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
# Author: Huzheng Yang
# %%
USE_HUGGINGFACE_SPACE = True
BATCH_SIZE = 4

if USE_HUGGINGFACE_SPACE:  # huggingface ZeroGPU, dynamic GPU allocation 
    try:
        import spaces
    except ImportError:
        USE_HUGGINGFACE_SPACE = False  # run on local machine
        BATCH_SIZE = 1

import gradio as gr

import torch
import torch.nn.functional as F
from PIL import Image
import numpy as np
import time
import threading
import os

from ncut_pytorch.backbone import extract_features, load_model
from ncut_pytorch.backbone import MODEL_DICT, LAYER_DICT, RES_DICT
from ncut_pytorch import NCUT, eigenvector_to_rgb

DATASET_TUPS = [
    # (name, num_classes)
    ('UCSC-VLAA/Recap-COCO-30K', None),
    ('nateraw/pascal-voc-2012', None),
    ('johnowhitaker/imagenette2-320', 10),
    ('jainr3/diffusiondb-pixelart', None),
    ('nielsr/CelebA-faces', None),
    ('JapanDegitalMaterial/Places_in_Japan', None),
    ('Borismile/Anime-dataset', None),
    ('Multimodal-Fatima/CUB_train', 200),
    ('mrm8488/ImageNet1K-val', 1000),
]
DATASET_NAMES = [tup[0] for tup in DATASET_TUPS]
DATASET_CLASSES = [tup[1] for tup in DATASET_TUPS]

from datasets import load_dataset

def download_all_datasets():
    for name in DATASET_NAMES:
        print(f"Downloading {name}")
        try:
            load_dataset(name, trust_remote_code=True)
        except Exception as e:
            print(f"Error downloading {name}: {e}")

def compute_ncut(
    features,
    num_eig=100,
    num_sample_ncut=10000,
    affinity_focal_gamma=0.3,
    knn_ncut=10,
    knn_tsne=10,
    embedding_method="UMAP",
    num_sample_tsne=300,
    perplexity=150,
    n_neighbors=150,
    min_dist=0.1,
    sampling_method="fps",
    metric="cosine",
):        
    logging_str = ""
    
    num_nodes = np.prod(features.shape[:-1])
    if num_nodes / 2 < num_eig:
        # raise gr.Error("Number of eigenvectors should be less than half the number of nodes.")
        gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.")
        num_eig = num_nodes // 2 - 1
        logging_str += f"Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.\n"
    
    start = time.time()
    eigvecs, eigvals = NCUT(
        num_eig=num_eig,
        num_sample=num_sample_ncut,
        device="cuda" if torch.cuda.is_available() else "cpu",
        affinity_focal_gamma=affinity_focal_gamma,
        knn=knn_ncut,
        sample_method=sampling_method,
        distance=metric,
        normalize_features=False,
    ).fit_transform(features.reshape(-1, features.shape[-1]))
    # print(f"NCUT time: {time.time() - start:.2f}s")
    logging_str += f"NCUT time: {time.time() - start:.2f}s\n"
    
    start = time.time()
    _, rgb = eigenvector_to_rgb(
        eigvecs,
        method=embedding_method,
        num_sample=num_sample_tsne,
        perplexity=perplexity,
        n_neighbors=n_neighbors,
        min_distance=min_dist,
        knn=knn_tsne,
        device="cuda" if torch.cuda.is_available() else "cpu",
    )
    logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n"

    rgb = rgb.reshape(features.shape[:-1] + (3,))
    return rgb, logging_str, eigvecs


def dont_use_too_much_green(image_rgb):
    # make sure the foval 40% of the image is red leading
    x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7)
    y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7)
    sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2))
    sorted_indices = sum_values.argsort(descending=True)
    image_rgb = image_rgb[:, :, :, sorted_indices]
    return image_rgb


def to_pil_images(images):
    size = images[0].shape[1]
    target = 256
    multiplier = target // size
    res = int(size * multiplier)
    return [
        Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((res, res), Image.Resampling.NEAREST)
        for image in images
    ]
    


def pil_images_to_video(images, output_path, fps=5):
    # from pil images to numpy
    images = [np.array(image) for image in images]
    
    # print("Saving video to", output_path)
    import cv2
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    height, width, _ = images[0].shape
    out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
    for image in images:
        out.write(cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
    out.release()
    return output_path

# save up to 100 videos in disk
class VideoCache:
    def __init__(self, max_videos=100):
        self.max_videos = max_videos
        self.videos = {}
    
    def add_video(self, video_path):
        if len(self.videos) >= self.max_videos:
            pop_path = self.videos.popitem()[0]
            try:
                os.remove(pop_path)
            except:
                pass
        self.videos[video_path] = video_path
    
    def get_video(self, video_path):
        return self.videos.get(video_path, None)

video_cache = VideoCache()
    
def get_random_path(length=10):
    import random
    import string
    name = ''.join(random.choices(string.ascii_lowercase + string.digits, k=length))
    path = f'/tmp/{name}.mp4'
    return path

default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/guitar_ego.jpg', './images/image_5.jpg']
default_outputs = ['./images/image-1.webp', './images/image-2.webp', './images/image-3.webp', './images/image-4.webp', './images/image-5.webp']
# default_outputs_independent = ['./images/image-6.webp', './images/image-7.webp', './images/image-8.webp', './images/image-9.webp', './images/image-10.webp']
default_outputs_independent = []

downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg']
downscaled_outputs = default_outputs

example_items = downscaled_images[:3] + downscaled_outputs[:3]



def ncut_run(
    model,
    images,
    model_name="SAM(sam_vit_b)",
    layer=-1,
    num_eig=100,
    node_type="block",
    affinity_focal_gamma=0.3,
    num_sample_ncut=10000,
    knn_ncut=10,
    embedding_method="UMAP",
    num_sample_tsne=1000,
    knn_tsne=10,
    perplexity=500,
    n_neighbors=500,
    min_dist=0.1,
    sampling_method="fps",
    old_school_ncut=False,
    recursion=False,
    recursion_l2_n_eigs=50,
    recursion_l3_n_eigs=20,
    recursion_metric="euclidean",
    video_output=False,
):
    logging_str = ""
    if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
        # raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
        gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.")
        logging_str += f"Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.\n"
        perplexity = num_sample_tsne - 1
        n_neighbors = num_sample_tsne - 1

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        
    node_type = node_type.split(":")[0].strip()
        
    start = time.time()
    features = extract_features(
        images, model, node_type=node_type, layer=layer-1, batch_size=BATCH_SIZE
    )
    # print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
    logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
    
    if recursion:
        rgbs = []
        inp = features
        for i, n_eigs in enumerate([num_eig, recursion_l2_n_eigs, recursion_l3_n_eigs]):
            logging_str += f"Recursion #{i+1}\n"
            rgb, _logging_str, eigvecs = compute_ncut(
                inp,
                num_eig=n_eigs,
                num_sample_ncut=num_sample_ncut,
                affinity_focal_gamma=affinity_focal_gamma,
                knn_ncut=knn_ncut,
                knn_tsne=knn_tsne,
                num_sample_tsne=num_sample_tsne,
                embedding_method=embedding_method,
                perplexity=perplexity,
                n_neighbors=n_neighbors,
                min_dist=min_dist,
                sampling_method=sampling_method,
                metric="cosine" if i == 0 else recursion_metric,
            )
            logging_str += _logging_str
            rgb = dont_use_too_much_green(rgb)
            rgbs.append(to_pil_images(rgb))
            inp = eigvecs.reshape(*features.shape[:3], -1)
            if recursion_metric == "cosine":
                inp = F.normalize(inp, dim=-1)
        return rgbs[0], rgbs[1], rgbs[2], logging_str
    
    if old_school_ncut:  # individual images
        logging_str += "Running NCut for each image independently\n"
        rgb = []
        for i_image in range(features.shape[0]):
            feature = features[i_image]
            _rgb, _logging_str, _ = compute_ncut(
                feature[None],
                num_eig=num_eig,
                num_sample_ncut=num_sample_ncut,
                affinity_focal_gamma=affinity_focal_gamma,
                knn_ncut=knn_ncut,
                knn_tsne=knn_tsne,
                num_sample_tsne=num_sample_tsne,
                embedding_method=embedding_method,
                perplexity=perplexity,
                n_neighbors=n_neighbors,
                min_dist=min_dist,
                sampling_method=sampling_method,
            )
            logging_str += _logging_str
            rgb.append(_rgb[0])
    
    if not old_school_ncut:  # joint across all images
        rgb, _logging_str, _ = compute_ncut(
            features,
            num_eig=num_eig,
            num_sample_ncut=num_sample_ncut,
            affinity_focal_gamma=affinity_focal_gamma,
            knn_ncut=knn_ncut,
            knn_tsne=knn_tsne,
            num_sample_tsne=num_sample_tsne,
            embedding_method=embedding_method,
            perplexity=perplexity,
            n_neighbors=n_neighbors,
            min_dist=min_dist,
            sampling_method=sampling_method,
        )
        logging_str += _logging_str
        
        rgb = dont_use_too_much_green(rgb)
        
    
    if video_output:
        video_path = get_random_path()
        video_cache.add_video(video_path)
        pil_images_to_video(to_pil_images(rgb), video_path)
        return video_path, logging_str
    else:
        return to_pil_images(rgb), logging_str

def _ncut_run(*args, **kwargs):
    try:
        ret = ncut_run(*args, **kwargs)
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return ret
    except Exception as e:
        gr.Error(str(e))
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return [], "Error: " + str(e)

if USE_HUGGINGFACE_SPACE:
    @spaces.GPU(duration=20)
    def quick_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    @spaces.GPU(duration=30)
    def long_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    @spaces.GPU(duration=60)
    def longer_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    @spaces.GPU(duration=120)
    def super_duper_long_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

if not USE_HUGGINGFACE_SPACE:
    def quick_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    def long_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    def longer_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    def super_duper_long_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

def extract_video_frames(video_path, max_frames=100):
    from decord import VideoReader
    vr = VideoReader(video_path)
    num_frames = len(vr)
    if num_frames > max_frames:
        gr.Warning(f"Video has {num_frames} frames. Only using {max_frames} frames. Evenly spaced.")
        frame_idx = np.linspace(0, num_frames - 1, max_frames, dtype=int).tolist()
    else:
        frame_idx = list(range(num_frames))
    frames = vr.get_batch(frame_idx).asnumpy()
    # return as list of PIL images
    return [(Image.fromarray(frames[i]), "") for i in range(frames.shape[0])]

def transform_image(image, resolution=(1024, 1024)):
    image = image.convert('RGB').resize(resolution, Image.LANCZOS)
    # Convert to torch tensor
    image = torch.tensor(np.array(image).transpose(2, 0, 1)).float()
    image = image / 255
    # Normalize
    image = (image - 0.5) / 0.5
    return image

def run_fn(
    images,
    model_name="SAM(sam_vit_b)",
    layer=-1,
    num_eig=100,
    node_type="block",
    affinity_focal_gamma=0.3,
    num_sample_ncut=10000,
    knn_ncut=10,
    embedding_method="UMAP",
    num_sample_tsne=1000,
    knn_tsne=10,
    perplexity=500,
    n_neighbors=500,
    min_dist=0.1,
    sampling_method="fps",
    old_school_ncut=False,
    max_frames=100,
    recursion=False,
    recursion_l2_n_eigs=50,
    recursion_l3_n_eigs=20,
    recursion_metric="euclidean",
):
    
    if images is None:
        gr.Warning("No images selected.")
        return [], "No images selected."
    
    video_output = False
    if isinstance(images, str):
        images = extract_video_frames(images, max_frames=max_frames)
        video_output = True
    
    if sampling_method == "fps":
        sampling_method = "farthest"
        
    # resize the images before acquiring GPU
    resolution = RES_DICT[model_name]
    images = [tup[0] for tup in images]
    images = [transform_image(image, resolution=resolution) for image in images]
    images = torch.stack(images)
        
    model = load_model(model_name)
    
    kwargs = {
        "model_name": model_name,
        "layer": layer,
        "num_eig": num_eig,
        "node_type": node_type,
        "affinity_focal_gamma": affinity_focal_gamma,
        "num_sample_ncut": num_sample_ncut,
        "knn_ncut": knn_ncut,
        "embedding_method": embedding_method,
        "num_sample_tsne": num_sample_tsne,
        "knn_tsne": knn_tsne,
        "perplexity": perplexity,
        "n_neighbors": n_neighbors,
        "min_dist": min_dist,
        "sampling_method": sampling_method,
        "old_school_ncut": old_school_ncut,
        "recursion": recursion,
        "recursion_l2_n_eigs": recursion_l2_n_eigs,
        "recursion_l3_n_eigs": recursion_l3_n_eigs,
        "recursion_metric": recursion_metric,
        "video_output": video_output,
    }
    # print(kwargs)
    num_images = len(images)
    if num_images > 100:
        return super_duper_long_run(model, images, **kwargs)
    if recursion:
        return longer_run(model, images, **kwargs)
    if num_images > 50:
        return longer_run(model, images, **kwargs)
    if old_school_ncut:
        return longer_run(model, images, **kwargs)
    if num_images > 10:
        return long_run(model, images, **kwargs)
    if embedding_method == "UMAP":
        if perplexity >= 250 or num_sample_tsne >= 500:
            return longer_run(model, images, **kwargs)
        return long_run(model, images, **kwargs)
    if embedding_method == "t-SNE":
        if perplexity >= 250 or num_sample_tsne >= 500:
            return long_run(model, images, **kwargs)
        return quick_run(model, images, **kwargs)
    
    return quick_run(model, images, **kwargs)



def make_input_images_section():
    gr.Markdown('### Input Images')
    input_gallery = gr.Gallery(value=None, label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil", show_share_button=False)
    submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary')
    clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button', variant='stop')
    return input_gallery, submit_button, clear_images_button

def make_input_video_section():
    # gr.Markdown('### Input Video')
    input_gallery = gr.Video(value=None, label="Select video", elem_id="video-input", height="auto", show_share_button=False)
    gr.Markdown('_image backbone model is used to extract features from each frame, NCUT is computed on all frames_')
    # max_frames_number = gr.Number(100, label="Max frames", elem_id="max_frames")
    max_frames_number = gr.Slider(1, 200, step=1, label="Max frames", value=100, elem_id="max_frames")
    submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary')
    clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button', variant='stop')
    return input_gallery, submit_button, clear_images_button, max_frames_number

def make_dataset_images_section(advanced=False):

    gr.Markdown('### Load Datasets')
    load_images_button = gr.Button("Load", elem_id="load-images-button", variant='secondary')
    advanced_radio = gr.Radio(["Basic", "Advanced"], label="Datasets", value="Advanced" if advanced else "Basic", elem_id="advanced-radio")
    with gr.Column() as basic_block:
        example_gallery = gr.Gallery(value=example_items, label="Example Set A", show_label=False, columns=[3], rows=[2], object_fit="scale-down", height="200px", show_share_button=False, elem_id="example-gallery")
    with gr.Column() as advanced_block:
        dataset_names = DATASET_NAMES
        dataset_classes = DATASET_CLASSES
        with gr.Row():
            dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="mrm8488/ImageNet1K-val", elem_id="dataset", min_width=300)
            num_images_slider = gr.Number(10, label="Number of images", elem_id="num_images")
            filter_by_class_checkbox = gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox")
            filter_by_class_text = gr.Textbox(label="Class to select", value="0,33,99", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. (1000 classes)", visible=True)
            is_random_checkbox = gr.Checkbox(label="Random shuffle", value=False, elem_id="random_seed_checkbox")
            random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=False)
    
    if advanced:
        advanced_block.visible = True
        basic_block.visible = False
    else:
        advanced_block.visible = False
        basic_block.visible = True
        
    # change visibility 
    advanced_radio.change(fn=lambda x: gr.update(visible=x=="Advanced"), inputs=advanced_radio, outputs=[advanced_block])
    advanced_radio.change(fn=lambda x: gr.update(visible=x=="Basic"), inputs=advanced_radio, outputs=[basic_block])
    
    
    def change_filter_options(dataset_name):
        idx = dataset_names.index(dataset_name)
        num_classes = dataset_classes[idx]
        if num_classes is None:
            return (gr.Checkbox(label="Filter by class", value=False, elem_id="filter_by_class_checkbox", visible=False),
                    gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info="e.g. `0,1,2`. This dataset has no class label", visible=False))
        return (gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox", visible=True),
                gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=True))
    dataset_dropdown.change(fn=change_filter_options, inputs=dataset_dropdown, outputs=[filter_by_class_checkbox, filter_by_class_text])
    
    def change_filter_by_class(is_filter, dataset_name):
        idx = dataset_names.index(dataset_name)
        num_classes = dataset_classes[idx]
        return gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=is_filter)
    filter_by_class_checkbox.change(fn=change_filter_by_class, inputs=[filter_by_class_checkbox, dataset_dropdown], outputs=filter_by_class_text)
    
    def change_random_seed(is_random):
        return gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=is_random)
    is_random_checkbox.change(fn=change_random_seed, inputs=is_random_checkbox, outputs=random_seed_slider)
    
        
    def load_dataset_images(is_advanced, dataset_name, num_images=10, 
                            is_filter=True, filter_by_class_text="0,1,2", 
                            is_random=False, seed=1):
        if is_advanced == "Basic":
            gr.Info("Loaded images from Ego-Exo4D")
            return default_images
        try:
            dataset = load_dataset(dataset_name, trust_remote_code=True)
            key = list(dataset.keys())[0]
            dataset = dataset[key]
        except Exception as e:
            gr.Error(f"Error loading dataset {dataset_name}: {e}")
            return None
        if num_images > len(dataset):
            num_images = len(dataset)
        
        if is_filter:
            classes = [int(i) for i in filter_by_class_text.split(",")]
            labels = np.array(dataset['label'])
            unique_labels = np.unique(labels)
            valid_classes = [i for i in classes if i in unique_labels]
            invalid_classes = [i for i in classes if i not in unique_labels]
            if len(invalid_classes) > 0:
                gr.Warning(f"Classes {invalid_classes} not found in the dataset.")
            if len(valid_classes) == 0:
                gr.Error(f"Classes {classes} not found in the dataset.")
                return None
            # shuffle each class
            chunk_size = num_images // len(valid_classes)
            image_idx = []
            for i in valid_classes:
                idx = np.where(labels == i)[0]
                if is_random:
                    idx = np.random.RandomState(seed).choice(idx, chunk_size, replace=False)
                else:
                    idx = idx[:chunk_size]
                image_idx.extend(idx.tolist())
        if not is_filter:
            if is_random:
                image_idx = np.random.RandomState(seed).choice(len(dataset), num_images, replace=False).tolist()
            else:
                image_idx = list(range(num_images))
        images = [dataset[i]['image'] for i in image_idx]
        gr.Info(f"Loaded {len(images)} images from {dataset_name}")
        return images   
    
    load_images_button.click(load_dataset_images, 
                        inputs=[advanced_radio, dataset_dropdown, num_images_slider,
                                filter_by_class_checkbox, filter_by_class_text, 
                                is_random_checkbox, random_seed_slider],
                        outputs=[input_gallery])
    
    return dataset_dropdown, num_images_slider, random_seed_slider, load_images_button
    
def make_output_images_section():
    gr.Markdown('### Output Images')
    output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto")
    return output_gallery

def make_parameters_section():
    gr.Markdown("### Parameters <a style='color: #0044CC;' href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Help</a>")
    from ncut_pytorch.backbone import get_demo_model_names
    model_names = get_demo_model_names()
    model_dropdown = gr.Dropdown(model_names, label="Backbone", value="DiNO(dino_vitb8)", elem_id="model_name")
    layer_slider = gr.Slider(1, 12, step=1, label="Backbone: Layer index", value=10, elem_id="layer")
    node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
    num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')

    def change_layer_slider(model_name):
        layer_dict = LAYER_DICT
        if model_name in layer_dict:
            value = layer_dict[model_name]
            return (gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True),
                    gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?"))
        else:
            value = 12
            return (gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?"),
                    gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True))
    model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=[layer_slider, node_type_dropdown])
    
    with gr.Accordion("➡️ Click to expand: more parameters", open=False):
        gr.Markdown("<a href='https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/' target='_blank'>Docs: How to Get Better Segmentation</a>")
        affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
        num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
        sampling_method_dropdown = gr.Dropdown(["fps", "random"], label="NCUT: Sampling method", value="fps", elem_id="sampling_method", info="Nyström approximation")
        knn_ncut_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation")
        embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_shpere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
        num_sample_tsne_slider = gr.Slider(100, 10000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
        knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation")
        perplexity_slider = gr.Slider(10, 1000, step=10, label="t-SNE: Perplexity", value=150, elem_id="perplexity")
        n_neighbors_slider = gr.Slider(10, 1000, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors")
        min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist")
    return [model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
            affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, 
            embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
            perplexity_slider, n_neighbors_slider, min_dist_slider, 
            sampling_method_dropdown]

demo = gr.Blocks(
    theme=gr.themes.Base(spacing_size='md', text_size='lg', primary_hue='blue', neutral_hue='slate', secondary_hue='pink'),
    # fill_width=False,
    # title="ncut-pytorch",
)
with demo:
    with gr.Tab('AlignedCut'):

        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button = make_input_images_section()
                dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section()
                
            with gr.Column(scale=5, min_width=200):
                output_gallery = make_output_images_section()
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, 
                    embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown
                ] = make_parameters_section()
                # logging text box
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")

        clear_images_button.click(lambda x: ([], []), outputs=[input_gallery, output_gallery])
        submit_button.click(
            run_fn,
            inputs=[
                input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
                affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, 
                embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown
            ],
            outputs=[output_gallery, logging_text],
            api_name="API_AlignedCut"
        )
        
    with gr.Tab('NCut'): 
        gr.Markdown('#### NCut (Legacy), not aligned, no Nyström approximation')
        gr.Markdown('Each image is solved independently, <em>color is <b>not</b> aligned across images</em>')
        
        gr.Markdown('---')
        gr.Markdown('<p style="text-align: center;"><b>NCut    vs.   AlignedCut</b></p>')
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('#### Pros')
                gr.Markdown('- Easy Solution. Use less eigenvectors.')
                gr.Markdown('- Exact solution. No Nyström approximation.')
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('#### Cons')
                gr.Markdown('- Not aligned. Distance is not preserved across images. No pseudo-labeling or correspondence.')
                gr.Markdown('- Poor complexity scaling. Unable to handle large number of pixels.')
        gr.Markdown('---')
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                gr.Markdown(' ')
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('<em>color is <b>not</b> aligned across images</em> 👇')


        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button = make_input_images_section()
                dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section()
                
            with gr.Column(scale=5, min_width=200):
                output_gallery = make_output_images_section()
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, 
                    embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown
                ] = make_parameters_section()
                old_school_ncut_checkbox = gr.Checkbox(label="Old school NCut", value=True, elem_id="old_school_ncut")
                invisible_list = [old_school_ncut_checkbox, num_sample_ncut_slider, knn_ncut_slider,
                                    num_sample_tsne_slider, knn_tsne_slider, sampling_method_dropdown]
                for item in invisible_list:
                    item.visible = False
                # logging text box
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
            
        clear_images_button.click(lambda x: ([], []), outputs=[input_gallery, output_gallery])
        submit_button.click(
            run_fn,
            inputs=[
                input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
                affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, 
                embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, 
                old_school_ncut_checkbox
            ],
            outputs=[output_gallery, logging_text],
            api_name="API_NCut",
        )
        
    with gr.Tab('Recursive Cut'): 
        gr.Markdown('NCUT can be applied recursively, the eigenvectors from previous iteration is the input for the next iteration NCUT. ')
        gr.Markdown('__Recursive NCUT__ amplifies small object parts, please see [Documentation](https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/#recursive-ncut)')
                
        gr.Markdown('---')

        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button = make_input_images_section()
                dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section(advanced=True)
                num_images_slider.value = 100
                clear_images_button.visible = False
                
            with gr.Column(scale=5, min_width=200):
                with gr.Accordion("➡️ Recursion config", open=True):
                    l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig")
                    l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig")
                    l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=25, elem_id="l3_num_eig")
                    metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric")
                    
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, 
                    embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown
                ] = make_parameters_section()
                num_eig_slider.visible = False
                # logging text box
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('### Output (Recursion #1)')
                l1_gallery = gr.Gallery(value=[], label="Recursion #1", show_label=False, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto")
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('### Output (Recursion #2)')
                l2_gallery = gr.Gallery(value=[], label="Recursion #2", show_label=False, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto")
            with gr.Column(scale=5, min_width=200):
                gr.Markdown('### Output (Recursion #3)')
                l3_gallery = gr.Gallery(value=[], label="Recursion #3", show_label=False, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto")
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                gr.Markdown(' ')
            with gr.Column(scale=5, min_width=200):
                gr.Markdown(' ')
            with gr.Column(scale=5, min_width=200):
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
        true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder")
        true_placeholder.visible = False
        false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder")
        false_placeholder.visible = False
        number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder")
        number_placeholder.visible = False
        clear_images_button.click(lambda x: ([],), outputs=[input_gallery])
        submit_button.click(
            run_fn,
            inputs=[
                input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown, 
                affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, 
                embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown,
                false_placeholder, number_placeholder, true_placeholder,
                l2_num_eig_slider, l3_num_eig_slider, metric_dropdown,
            ],
            outputs=[l1_gallery, l2_gallery, l3_gallery, logging_text],
            api_name="API_RecursiveCut"
        )

        
    with gr.Tab('Video'): 
        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                video_input_gallery, submit_button, clear_video_button, max_frame_number = make_input_video_section()
            with gr.Column(scale=5, min_width=200):
                video_output_gallery = gr.Video(value=None, label="NCUT Embedding", elem_id="ncut", height="auto", show_share_button=False)
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, 
                    embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown
                ] = make_parameters_section()
                num_sample_tsne_slider.value = 1000
                perplexity_slider.value = 500
                n_neighbors_slider.value = 500
                knn_tsne_slider.value = 20
                # logging text box
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
        clear_video_button.click(lambda x: (None, None), outputs=[video_input_gallery, video_output_gallery])
        place_holder_false = gr.Checkbox(label="Place holder", value=False, elem_id="place_holder_false")
        place_holder_false.visible = False
        submit_button.click(
            run_fn,
            inputs=[
                video_input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
                affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, 
                embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown,
                place_holder_false, max_frame_number
            ],
            outputs=[video_output_gallery, logging_text],
            api_name="API_VideoCut",
        )    
    
    with gr.Tab('Text'): 
        if USE_HUGGINGFACE_SPACE:
            from app_text import make_demo
        else:
            from draft_gradio_app_text import make_demo
        make_demo()
        
    with gr.Tab('Compare Models'): 
        def add_one_model(i_model=1):
            with gr.Column(scale=5, min_width=200) as col:
                gr.Markdown(f'### Output Images')
                output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto")
                submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary')
                [
                    model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, 
                    affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, 
                    embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                    perplexity_slider, n_neighbors_slider, min_dist_slider, 
                    sampling_method_dropdown
                ] = make_parameters_section()
                # logging text box
                logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
                submit_button.click(
                    run_fn,
                    inputs=[
                        input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
                        affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, 
                        embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
                        perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown
                    ],
                    outputs=[output_gallery, logging_text]
                )
                
                return col

        with gr.Row():
            with gr.Column(scale=5, min_width=200):
                input_gallery, submit_button, clear_images_button = make_input_images_section()
                clear_images_button.click(lambda x: ([],), outputs=[input_gallery])
                submit_button.visible = False
                dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section(advanced=True)

                
            for i in range(2):
                add_one_model()
                
        # Create rows and buttons in a loop
        rows = []
        buttons = []

        for i in range(4):
            row = gr.Row(visible=False)
            rows.append(row)
            
            with row:
                for j in range(3):
                    with gr.Column(scale=5, min_width=200):
                        add_one_model()

            button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3)
            buttons.append(button)
            
            if i > 0:
                # Reveal the current row and next button
                buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row)
                buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button)
                
                # Hide the current button
                buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1])

        # Last button only reveals the last row and hides itself
        buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1])
        buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1])
        


if USE_HUGGINGFACE_SPACE:
    from backbone import download_all_models
    threading.Thread(target=download_all_models).start()
    from backbone_text import download_all_models
    threading.Thread(target=download_all_models).start()
    
    threading.Thread(target=download_all_datasets).start()
    demo.launch()
else:
    demo.launch(share=True)

# %%