Datasets:
File size: 8,684 Bytes
62dcf5b b42d454 62dcf5b b707e93 69d3bfe b707e93 c04df20 b707e93 69d3bfe b707e93 e38aeeb b707e93 f81cea3 b707e93 b42d454 b707e93 df6a40d 92104bb 8c4b0a2 b42d454 fde2d1d b42d454 69d3bfe b707e93 c04df20 51cae7d b707e93 eca9f12 8443ee7 211dc42 8443ee7 8c4b0a2 8443ee7 211dc42 8443ee7 8c4b0a2 8443ee7 211dc42 8443ee7 8c4b0a2 8443ee7 b707e93 eca9f12 b707e93 071839c 8b0e745 70e927a b707e93 8b0e745 3236b25 8b0e745 3236b25 8b0e745 68f3843 1fae491 b707e93 35e0cca b707e93 1fae491 69d3bfe 9006e8f b707e93 c04df20 b707e93 b42d454 dbaca55 91185bb b42d454 dbaca55 b42d454 e38aeeb b707e93 b42d454 b707e93 8c4b0a2 69e7ef9 d2fe9b6 b42d454 675957f b707e93 d2fe9b6 33e2087 cfdaebd 26fc1e0 de21ad0 b127233 b42d454 b127233 b42d454 b127233 b42d454 205f0ce b707e93 b42d454 b707e93 340083a b42d454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_ORIGINAL_FEATURE_NAMES = [
"age",
"workclass",
"final_weight",
"education",
"education-num",
"marital_status",
"occupation",
"relationship",
"race",
"sex",
"capital_gain",
"capital_loss",
"hours_per_week",
"native_country",
"threshold"
]
_BASE_FEATURE_NAMES = [
"age",
"capital_gain",
"capital_loss",
"education",
"final_weight",
"hours_worked_per_week",
"marital_status",
"native_country",
"occupation",
"race",
"relationship",
"is_male",
"workclass",
"over_threshold",
]
_ENCODING_DICS = {
"is_male": {
"Male": True,
"Female": False
}
}
_RACE_ENCODING = {
"White": 0,
"Black": 1,
"Asian-Pac-Islander": 2,
"Amer-Indian-Eskimo": 3,
"Other": 4,
}
_EDUCATION_ENCODING = {
"Preschool": 0,
"1st-4th": 1,
"5th-6th": 2,
"7th-8th": 3,
"9th": 4,
"10th": 5,
"11th": 6,
"12th": 7,
"HS-grad": 8,
"Assoc-acdm": 9,
"Assoc-voc": 10,
"Some-college": 11,
"Bachelors": 12,
"Masters": 13,
"Doctorate": 14,
"Prof-school": 15
}
DESCRIPTION = "Adult dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Adult"
_URLS = ("https://huggingface.co/datasets/mstz/adult/raw/adult.csv")
_CITATION = """
@inproceedings{DBLP:conf/kdd/Kohavi96,
author = {Ron Kohavi},
editor = {Evangelos Simoudis and
Jiawei Han and
Usama M. Fayyad},
title = {Scaling Up the Accuracy of Naive-Bayes Classifiers: {A} Decision-Tree
Hybrid},
booktitle = {Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining (KDD-96), Portland, Oregon, {USA}},
pages = {202--207},
publisher = {{AAAI} Press},
year = {1996},
url = {http://www.aaai.org/Library/KDD/1996/kdd96-033.php},
timestamp = {Mon, 05 Jun 2017 13:20:21 +0200},
biburl = {https://dblp.org/rec/conf/kdd/Kohavi96.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/adult/raw/main/adult_tr.csv",
"test": "https://huggingface.co/datasets/mstz/adult/raw/main/adult_ts.csv"
}
features_types_per_config = {
"encoding": {
"feature": datasets.Value("string"),
"original_value": datasets.Value("string"),
"encoded_value": datasets.Value("int64"),
},
"income": {
"age": datasets.Value("int64"),
"capital_gain": datasets.Value("float64"),
"capital_loss": datasets.Value("float64"),
"education": datasets.Value("int8"),
"final_weight": datasets.Value("int64"),
"hours_worked_per_week": datasets.Value("int64"),
"marital_status": datasets.Value("string"),
"native_country": datasets.Value("string"),
"occupation": datasets.Value("string"),
"race": datasets.Value("string"),
"relationship": datasets.Value("string"),
"is_male": datasets.Value("bool"),
"workclass": datasets.Value("string"),
"over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
"income-no race": {
"age": datasets.Value("int64"),
"capital_gain": datasets.Value("float64"),
"capital_loss": datasets.Value("float64"),
"education": datasets.Value("int64"),
"final_weight": datasets.Value("int64"),
"hours_worked_per_week": datasets.Value("int64"),
"marital_status": datasets.Value("string"),
"native_country": datasets.Value("string"),
"occupation": datasets.Value("string"),
"relationship": datasets.Value("string"),
"is_male": datasets.Value("bool"),
"workclass": datasets.Value("string"),
"over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
"race": {
"age": datasets.Value("int64"),
"capital_gain": datasets.Value("float64"),
"capital_loss": datasets.Value("float64"),
"education": datasets.Value("int64"),
"final_weight": datasets.Value("int64"),
"hours_worked_per_week": datasets.Value("int64"),
"marital_status": datasets.Value("string"),
"native_country": datasets.Value("string"),
"occupation": datasets.Value("string"),
"relationship": datasets.Value("string"),
"is_male": datasets.Value("bool"),
"workclass": datasets.Value("string"),
"over_threshold": datasets.Value("int8"),
"race": datasets.ClassLabel(num_classes=5, names=["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"])
}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class AdultConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(AdultConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Adult(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "income"
BUILDER_CONFIGS = [
AdultConfig(name="income",
description="Adult for income threshold binary classification."),
AdultConfig(name="income-no race",
description="Adult for income threshold binary classification, race excluded from features."),
AdultConfig(name="race",
description="Adult for race (multiclass) classification."),
AdultConfig(name="encoding",
description="Encoding dictionaries for discrete features.")
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloads["test"]}),
]
def _generate_examples(self, filepath: str):
if self.config.name == "encoding":
data = self.encodings()
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
else:
data = pandas.read_csv(filepath)
data = self.preprocess(data, config=self.config.name)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def encodings(self):
data = pandas.DataFrame([("education", original_value, encoded_value)
for original_value, encoded_value in _EDUCATION_ENCODING.items()],
columns=["feature", "original_value", "encoded_value"])
return data
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
data.drop("education", axis="columns", inplace=True)
data = data.rename(columns={"threshold": "over_threshold", "sex": "is_male"})
data = data[["age", "capital_gain", "capital_loss", "education-num", "final_weight",
"hours_per_week", "marital_status", "native_country", "occupation",
"race", "relationship", "is_male", "workclass", "over_threshold"]]
data.columns = _BASE_FEATURE_NAMES
for feature in _ENCODING_DICS:
encoding_function = partial(self.encode, feature)
data.loc[:, feature] = data[feature].apply(encoding_function)
if config == "income":
return data[list(features_types_per_config["income"].keys())]
elif config == "income-no race":
return data[list(features_types_per_config["income-no race"].keys())]
elif config =="race":
data.loc[:, "race"] = data.race.apply(self.encode_race)
data = data[list(features_types_per_config["race"].keys())]
return data
def encode(self, feature, value):
if feature in _ENCODING_DICS:
return _ENCODING_DICS[feature][value]
raise ValueError(f"Unknown feature: {feature}")
def encode_race(self, race):
return _RACE_ENCODING[race]
|