mstz commited on
Commit
675957f
·
1 Parent(s): d67b2f1

Upload adult.py

Browse files
Files changed (1) hide show
  1. adult.py +2 -5
adult.py CHANGED
@@ -69,7 +69,7 @@ urls_per_split = {
69
  "test": "https://huggingface.co/datasets/mstz/adult/raw/main/adult_ts.csv"
70
  }
71
  features_types_per_config = {
72
- "income": datasets.Features({#"age": datasets.Value("int64"),
73
  "capital_gain": datasets.Value("float64"),
74
  "capital_loss": datasets.Value("float64"),
75
  "education": datasets.Value("int8"),
@@ -158,7 +158,6 @@ class Adult(datasets.GeneratorBasedBuilder):
158
  ]
159
 
160
  def _generate_examples(self, filepath: str):
161
- print(f"generating for {filepath}")
162
  data = pandas.read_csv(filepath)
163
  data = self.preprocess(data, config=self.config.name)
164
 
@@ -169,9 +168,7 @@ class Adult(datasets.GeneratorBasedBuilder):
169
 
170
  def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
171
  data.drop("education", axis="columns", inplace=True)
172
- print(data.age.unique())
173
- data = data[[#"age",
174
- "capital_gain", "capital_loss", "education-num", "final_weight",
175
  "hours_per_week", "marital_status", "native_country", "occupation",
176
  "race", "relationship", "sex", "workclass", "threshold"]]
177
  data.columns = _BASE_FEATURE_NAMES[1:]
 
69
  "test": "https://huggingface.co/datasets/mstz/adult/raw/main/adult_ts.csv"
70
  }
71
  features_types_per_config = {
72
+ "income": datasets.Features({"age": datasets.Value("int64"),
73
  "capital_gain": datasets.Value("float64"),
74
  "capital_loss": datasets.Value("float64"),
75
  "education": datasets.Value("int8"),
 
158
  ]
159
 
160
  def _generate_examples(self, filepath: str):
 
161
  data = pandas.read_csv(filepath)
162
  data = self.preprocess(data, config=self.config.name)
163
 
 
168
 
169
  def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
170
  data.drop("education", axis="columns", inplace=True)
171
+ data = data[["age", "capital_gain", "capital_loss", "education-num", "final_weight",
 
 
172
  "hours_per_week", "marital_status", "native_country", "occupation",
173
  "race", "relationship", "sex", "workclass", "threshold"]]
174
  data.columns = _BASE_FEATURE_NAMES[1:]