Datasets:
Upload 2 files
Browse files
README.md
CHANGED
@@ -11,9 +11,34 @@ size_categories:
|
|
11 |
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
12 |
- tabular-classification
|
13 |
configs:
|
|
|
14 |
- income
|
15 |
- income-no race
|
16 |
- race
|
17 |
---
|
18 |
# Adult
|
19 |
-
The [Adult dataset](https://archive.ics.uci.edu/ml/datasets/Adult)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
12 |
- tabular-classification
|
13 |
configs:
|
14 |
+
- encoding
|
15 |
- income
|
16 |
- income-no race
|
17 |
- race
|
18 |
---
|
19 |
# Adult
|
20 |
+
The [Adult dataset](https://archive.ics.uci.edu/ml/datasets/Adult) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
|
21 |
+
Census dataset including income threshold.
|
22 |
+
|
23 |
+
# Configurations and tasks
|
24 |
+
The dataset has four configurations:
|
25 |
+
- `encoding`, which holds the encoding dictionaries mapping binary and ordinal features to their value;
|
26 |
+
- `income`, for binary classification of the individual's income;
|
27 |
+
- `income-no race`, as `income`, but the `race` feature is removed;
|
28 |
+
- `race`, multiclass classification to predict the `race` of the individual.
|
29 |
+
|
30 |
+
# Features
|
31 |
+
- `age` Age of the person;
|
32 |
+
- `capital_gain` Capital gained by the person;
|
33 |
+
- `capital_loss` Capital lost by the person;
|
34 |
+
- `education` Education level: the higher, the more educated the person;
|
35 |
+
- `final_weight`
|
36 |
+
- `hours_per_week` Hours worked per week;
|
37 |
+
- `marital_status` Marital status of the person;
|
38 |
+
- `native_country` Native country of the person;
|
39 |
+
- `occupation` Job of the person;
|
40 |
+
- `race` Race of the person;
|
41 |
+
- `relationship`
|
42 |
+
- `sex` Sex of the person;
|
43 |
+
- `workclass` Type of job of the person;
|
44 |
+
- `over_threshold` `1` for income `>= 50k$`, `0` otherwise.
|
adult.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
"""Adult: A Census Dataset"""
|
2 |
|
3 |
from typing import List
|
|
|
4 |
|
5 |
import datasets
|
6 |
|
@@ -39,8 +40,22 @@ _BASE_FEATURE_NAMES = [
|
|
39 |
"relationship",
|
40 |
"sex",
|
41 |
"workclass",
|
42 |
-
"
|
43 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
DESCRIPTION = "Adult dataset from the UCI ML repository."
|
45 |
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Adult"
|
46 |
_URLS = ("https://huggingface.co/datasets/mstz/adult/raw/adult.csv")
|
@@ -82,7 +97,7 @@ features_types_per_config = {
|
|
82 |
"relationship": datasets.Value("string"),
|
83 |
"sex": datasets.Value("int8"),
|
84 |
"workclass": datasets.Value("string"),
|
85 |
-
"
|
86 |
"income-no race": {"age": datasets.Value("int64"),
|
87 |
"capital_gain": datasets.Value("float64"),
|
88 |
"capital_loss": datasets.Value("float64"),
|
@@ -95,7 +110,7 @@ features_types_per_config = {
|
|
95 |
"relationship": datasets.Value("string"),
|
96 |
"sex": datasets.Value("int8"),
|
97 |
"workclass": datasets.Value("string"),
|
98 |
-
"
|
99 |
"race": {"age": datasets.Value("int64"),
|
100 |
"capital_gain": datasets.Value("float64"),
|
101 |
"capital_loss": datasets.Value("float64"),
|
@@ -124,6 +139,8 @@ class Adult(datasets.GeneratorBasedBuilder):
|
|
124 |
# dataset versions
|
125 |
DEFAULT_CONFIG = "income"
|
126 |
BUILDER_CONFIGS = [
|
|
|
|
|
127 |
AdultConfig(name="income",
|
128 |
description="Adult for income threshold binary classification."),
|
129 |
AdultConfig(name="income-no race",
|
@@ -151,91 +168,61 @@ class Adult(datasets.GeneratorBasedBuilder):
|
|
151 |
]
|
152 |
|
153 |
def _generate_examples(self, filepath: str):
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
|
158 |
-
data_row = dict(row)
|
159 |
|
160 |
-
yield row_id, data_row
|
161 |
|
162 |
def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
|
163 |
data.drop("education", axis="columns", inplace=True)
|
|
|
164 |
data = data[["age", "capital_gain", "capital_loss", "education-num", "final_weight",
|
165 |
"hours_per_week", "marital_status", "native_country", "occupation",
|
166 |
-
"race", "relationship", "sex", "workclass", "
|
167 |
data.columns = _BASE_FEATURE_NAMES
|
168 |
|
169 |
-
|
170 |
-
|
|
|
171 |
|
172 |
if config == "income":
|
173 |
-
return
|
174 |
elif config == "income-no race":
|
175 |
-
return
|
176 |
elif config =="race":
|
|
|
|
|
|
|
177 |
return self.race_preprocessing(data)
|
178 |
else:
|
179 |
raise ValueError(f"Unknown config: {config}")
|
180 |
|
181 |
-
def
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
def income_norace_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
187 |
-
data = data[list(features_types_per_config["income-no race"].keys())]
|
188 |
-
|
189 |
-
return data
|
190 |
|
191 |
-
def race_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
192 |
-
features = list(features_types_per_config["race"].keys())
|
193 |
-
features[features.index("over_threshold")] = "threshold"
|
194 |
-
data.loc[:, "race"] = data.race.apply(self.encode_race)
|
195 |
-
data = data[features]
|
196 |
-
data.columns = ["age", "capital_gain", "capital_loss", "education", "final_weight",
|
197 |
-
"hours_per_week", "marital_status", "native_country", "occupation", "relationship", "sex", "workclass", "over_threshold", "race"]
|
198 |
-
|
199 |
-
return data
|
200 |
-
|
201 |
def encode_race(self, race):
|
202 |
-
return
|
203 |
-
|
204 |
-
def decode_race(self, code):
|
205 |
-
return self.race_decoding_dic()[code]
|
206 |
-
|
207 |
-
def race_decoding_dic(self):
|
208 |
-
return {
|
209 |
-
0: "White",
|
210 |
-
1: "Black",
|
211 |
-
2: "Asian-Pac-Islander",
|
212 |
-
3: "Amer-Indian-Eskimo",
|
213 |
-
4: "Other",
|
214 |
-
}
|
215 |
-
|
216 |
-
def race_encoding_dic(self):
|
217 |
-
return {
|
218 |
-
"White": 0,
|
219 |
-
"Black": 1,
|
220 |
-
"Asian-Pac-Islander": 2,
|
221 |
-
"Amer-Indian-Eskimo": 3,
|
222 |
-
"Other": 4,
|
223 |
-
}
|
224 |
-
|
225 |
-
def encode_sex(self, sex):
|
226 |
-
return self.sex_encoding_dic()[sex]
|
227 |
-
|
228 |
-
def decode_sex(self, code):
|
229 |
-
return self.sex_decoding_dic()[code]
|
230 |
-
|
231 |
-
def sex_encoding_dic(self):
|
232 |
-
return {
|
233 |
-
"Male": 0,
|
234 |
-
"Female": 1
|
235 |
-
}
|
236 |
-
|
237 |
-
def sex_decoding_dic(self):
|
238 |
-
return {
|
239 |
-
0: "Male",
|
240 |
-
1: "Female"
|
241 |
-
}
|
|
|
1 |
"""Adult: A Census Dataset"""
|
2 |
|
3 |
from typing import List
|
4 |
+
from functools import partial
|
5 |
|
6 |
import datasets
|
7 |
|
|
|
40 |
"relationship",
|
41 |
"sex",
|
42 |
"workclass",
|
43 |
+
"over_threshold",
|
44 |
]
|
45 |
+
_ENCODINGS = {
|
46 |
+
"sex": {
|
47 |
+
"Male": 0,
|
48 |
+
"Female": 1
|
49 |
+
}
|
50 |
+
}
|
51 |
+
_RACE_ENCODING = {
|
52 |
+
"White": 0,
|
53 |
+
"Black": 1,
|
54 |
+
"Asian-Pac-Islander": 2,
|
55 |
+
"Amer-Indian-Eskimo": 3,
|
56 |
+
"Other": 4,
|
57 |
+
}
|
58 |
+
|
59 |
DESCRIPTION = "Adult dataset from the UCI ML repository."
|
60 |
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Adult"
|
61 |
_URLS = ("https://huggingface.co/datasets/mstz/adult/raw/adult.csv")
|
|
|
97 |
"relationship": datasets.Value("string"),
|
98 |
"sex": datasets.Value("int8"),
|
99 |
"workclass": datasets.Value("string"),
|
100 |
+
"over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))},
|
101 |
"income-no race": {"age": datasets.Value("int64"),
|
102 |
"capital_gain": datasets.Value("float64"),
|
103 |
"capital_loss": datasets.Value("float64"),
|
|
|
110 |
"relationship": datasets.Value("string"),
|
111 |
"sex": datasets.Value("int8"),
|
112 |
"workclass": datasets.Value("string"),
|
113 |
+
"over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))},
|
114 |
"race": {"age": datasets.Value("int64"),
|
115 |
"capital_gain": datasets.Value("float64"),
|
116 |
"capital_loss": datasets.Value("float64"),
|
|
|
139 |
# dataset versions
|
140 |
DEFAULT_CONFIG = "income"
|
141 |
BUILDER_CONFIGS = [
|
142 |
+
AdultConfig(name="encoding",
|
143 |
+
description="Encoding dictionaries."),
|
144 |
AdultConfig(name="income",
|
145 |
description="Adult for income threshold binary classification."),
|
146 |
AdultConfig(name="income-no race",
|
|
|
168 |
]
|
169 |
|
170 |
def _generate_examples(self, filepath: str):
|
171 |
+
if self.config.name == "encoding":
|
172 |
+
data = self.encodings()
|
173 |
+
elif self.config.name in ["income", "income-no race", "race"]:
|
174 |
+
data = pandas.read_csv(filepath)
|
175 |
+
data = self.preprocess(data, config=self.config.name)
|
176 |
+
|
177 |
+
for row_id, row in data.iterrows():
|
178 |
+
data_row = dict(row)
|
179 |
+
|
180 |
+
yield row_id, data_row
|
181 |
+
else:
|
182 |
+
raise ValueError(f"Unknown config: {self.config.name}")
|
183 |
+
|
184 |
+
def encodings(self):
|
185 |
+
data = [pandas.DataFrame([(feature, original_value, encoded_value)
|
186 |
+
for original_value, encoded_value in d.items()],
|
187 |
+
columns=["feature", "original_value", "encoded_value"])
|
188 |
+
for feature in _ENCODINGS]
|
189 |
+
data.append(pandas.DataFrame([("race", original_value, encoded_value)
|
190 |
+
for original_value, encoded_value in _RACE_ENCODING.items()],
|
191 |
+
columns=["feature", "original_value", "encoded_value"]))
|
192 |
+
data = pandas.concat(data, axis="rows").reset_index()
|
193 |
+
data.drop("index", axis="columns", inplace=True)
|
194 |
|
195 |
+
return data
|
|
|
196 |
|
|
|
197 |
|
198 |
def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
|
199 |
data.drop("education", axis="columns", inplace=True)
|
200 |
+
|
201 |
data = data[["age", "capital_gain", "capital_loss", "education-num", "final_weight",
|
202 |
"hours_per_week", "marital_status", "native_country", "occupation",
|
203 |
+
"race", "relationship", "sex", "workclass", "over_threshold"]]
|
204 |
data.columns = _BASE_FEATURE_NAMES
|
205 |
|
206 |
+
for feature in _ENCODINGS:
|
207 |
+
encoding_function = partial(self.encode, feature)
|
208 |
+
data.loc[:, feature] = data[feature].apply(encoding_function)
|
209 |
|
210 |
if config == "income":
|
211 |
+
return data[list(features_types_per_config["income"].keys())]
|
212 |
elif config == "income-no race":
|
213 |
+
return data[list(features_types_per_config["income-no race"].keys())]
|
214 |
elif config =="race":
|
215 |
+
data.loc[:, "race"] = data.race.apply(self.encode_race)
|
216 |
+
data = data[list(features_types_per_config["race"].keys())]
|
217 |
+
|
218 |
return self.race_preprocessing(data)
|
219 |
else:
|
220 |
raise ValueError(f"Unknown config: {config}")
|
221 |
|
222 |
+
def encode(self, feature, value):
|
223 |
+
if feature in _ENCODING_DICS:
|
224 |
+
return _ENCODING_DICS[feature][value]
|
225 |
+
raise ValueError(f"Unknown feature: {feature}")
|
|
|
|
|
|
|
|
|
|
|
226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
def encode_race(self, race):
|
228 |
+
return _RACE_ENCODING[race]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|