mstz commited on
Commit
8443ee7
·
1 Parent(s): b42d454

Upload adult.py

Browse files
Files changed (1) hide show
  1. adult.py +52 -41
adult.py CHANGED
@@ -84,47 +84,58 @@ urls_per_split = {
84
  "test": "https://huggingface.co/datasets/mstz/adult/raw/main/adult_ts.csv"
85
  }
86
  features_types_per_config = {
87
- "income": {"age": datasets.Value("int64"),
88
- "capital_gain": datasets.Value("float64"),
89
- "capital_loss": datasets.Value("float64"),
90
- "education": datasets.Value("int8"),
91
- "final_weight": datasets.Value("int64"),
92
- "hours_per_week": datasets.Value("int64"),
93
- "marital_status": datasets.Value("string"),
94
- "native_country": datasets.Value("string"),
95
- "occupation": datasets.Value("string"),
96
- "race": datasets.Value("string"),
97
- "relationship": datasets.Value("string"),
98
- "sex": datasets.Value("int8"),
99
- "workclass": datasets.Value("string"),
100
- "over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))},
101
- "income-no race": {"age": datasets.Value("int64"),
102
- "capital_gain": datasets.Value("float64"),
103
- "capital_loss": datasets.Value("float64"),
104
- "education": datasets.Value("int64"),
105
- "final_weight": datasets.Value("int64"),
106
- "hours_per_week": datasets.Value("int64"),
107
- "marital_status": datasets.Value("string"),
108
- "native_country": datasets.Value("string"),
109
- "occupation": datasets.Value("string"),
110
- "relationship": datasets.Value("string"),
111
- "sex": datasets.Value("int8"),
112
- "workclass": datasets.Value("string"),
113
- "over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))},
114
- "race": {"age": datasets.Value("int64"),
115
- "capital_gain": datasets.Value("float64"),
116
- "capital_loss": datasets.Value("float64"),
117
- "education": datasets.Value("int64"),
118
- "final_weight": datasets.Value("int64"),
119
- "hours_per_week": datasets.Value("int64"),
120
- "marital_status": datasets.Value("string"),
121
- "native_country": datasets.Value("string"),
122
- "occupation": datasets.Value("string"),
123
- "relationship": datasets.Value("string"),
124
- "sex": datasets.Value("int8"),
125
- "workclass": datasets.Value("string"),
126
- "over_threshold": datasets.Value("int8"),
127
- "race": datasets.ClassLabel(num_classes=5, names=["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"])}
 
 
 
 
 
 
 
 
 
 
 
128
  }
129
  features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
130
 
 
84
  "test": "https://huggingface.co/datasets/mstz/adult/raw/main/adult_ts.csv"
85
  }
86
  features_types_per_config = {
87
+ "encoding": {
88
+ "feature": datasets.Value("string"),
89
+ "original_value": datasets.Value("string"),
90
+ "encoded_value": datasets.Value("int64"),
91
+ },
92
+ "income": {
93
+ "age": datasets.Value("int64"),
94
+ "capital_gain": datasets.Value("float64"),
95
+ "capital_loss": datasets.Value("float64"),
96
+ "education": datasets.Value("int8"),
97
+ "final_weight": datasets.Value("int64"),
98
+ "hours_per_week": datasets.Value("int64"),
99
+ "marital_status": datasets.Value("string"),
100
+ "native_country": datasets.Value("string"),
101
+ "occupation": datasets.Value("string"),
102
+ "race": datasets.Value("string"),
103
+ "relationship": datasets.Value("string"),
104
+ "sex": datasets.Value("int8"),
105
+ "workclass": datasets.Value("string"),
106
+ "over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
107
+ },
108
+ "income-no race": {
109
+ "age": datasets.Value("int64"),
110
+ "capital_gain": datasets.Value("float64"),
111
+ "capital_loss": datasets.Value("float64"),
112
+ "education": datasets.Value("int64"),
113
+ "final_weight": datasets.Value("int64"),
114
+ "hours_per_week": datasets.Value("int64"),
115
+ "marital_status": datasets.Value("string"),
116
+ "native_country": datasets.Value("string"),
117
+ "occupation": datasets.Value("string"),
118
+ "relationship": datasets.Value("string"),
119
+ "sex": datasets.Value("int8"),
120
+ "workclass": datasets.Value("string"),
121
+ "over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
122
+ },
123
+ "race": {
124
+ "age": datasets.Value("int64"),
125
+ "capital_gain": datasets.Value("float64"),
126
+ "capital_loss": datasets.Value("float64"),
127
+ "education": datasets.Value("int64"),
128
+ "final_weight": datasets.Value("int64"),
129
+ "hours_per_week": datasets.Value("int64"),
130
+ "marital_status": datasets.Value("string"),
131
+ "native_country": datasets.Value("string"),
132
+ "occupation": datasets.Value("string"),
133
+ "relationship": datasets.Value("string"),
134
+ "sex": datasets.Value("int8"),
135
+ "workclass": datasets.Value("string"),
136
+ "over_threshold": datasets.Value("int8"),
137
+ "race": datasets.ClassLabel(num_classes=5, names=["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"])
138
+ }
139
  }
140
  features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
141