Datasets:
Upload adult.py
Browse files
adult.py
CHANGED
@@ -84,47 +84,58 @@ urls_per_split = {
|
|
84 |
"test": "https://huggingface.co/datasets/mstz/adult/raw/main/adult_ts.csv"
|
85 |
}
|
86 |
features_types_per_config = {
|
87 |
-
"
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
}
|
129 |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
130 |
|
|
|
84 |
"test": "https://huggingface.co/datasets/mstz/adult/raw/main/adult_ts.csv"
|
85 |
}
|
86 |
features_types_per_config = {
|
87 |
+
"encoding": {
|
88 |
+
"feature": datasets.Value("string"),
|
89 |
+
"original_value": datasets.Value("string"),
|
90 |
+
"encoded_value": datasets.Value("int64"),
|
91 |
+
},
|
92 |
+
"income": {
|
93 |
+
"age": datasets.Value("int64"),
|
94 |
+
"capital_gain": datasets.Value("float64"),
|
95 |
+
"capital_loss": datasets.Value("float64"),
|
96 |
+
"education": datasets.Value("int8"),
|
97 |
+
"final_weight": datasets.Value("int64"),
|
98 |
+
"hours_per_week": datasets.Value("int64"),
|
99 |
+
"marital_status": datasets.Value("string"),
|
100 |
+
"native_country": datasets.Value("string"),
|
101 |
+
"occupation": datasets.Value("string"),
|
102 |
+
"race": datasets.Value("string"),
|
103 |
+
"relationship": datasets.Value("string"),
|
104 |
+
"sex": datasets.Value("int8"),
|
105 |
+
"workclass": datasets.Value("string"),
|
106 |
+
"over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
107 |
+
},
|
108 |
+
"income-no race": {
|
109 |
+
"age": datasets.Value("int64"),
|
110 |
+
"capital_gain": datasets.Value("float64"),
|
111 |
+
"capital_loss": datasets.Value("float64"),
|
112 |
+
"education": datasets.Value("int64"),
|
113 |
+
"final_weight": datasets.Value("int64"),
|
114 |
+
"hours_per_week": datasets.Value("int64"),
|
115 |
+
"marital_status": datasets.Value("string"),
|
116 |
+
"native_country": datasets.Value("string"),
|
117 |
+
"occupation": datasets.Value("string"),
|
118 |
+
"relationship": datasets.Value("string"),
|
119 |
+
"sex": datasets.Value("int8"),
|
120 |
+
"workclass": datasets.Value("string"),
|
121 |
+
"over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
122 |
+
},
|
123 |
+
"race": {
|
124 |
+
"age": datasets.Value("int64"),
|
125 |
+
"capital_gain": datasets.Value("float64"),
|
126 |
+
"capital_loss": datasets.Value("float64"),
|
127 |
+
"education": datasets.Value("int64"),
|
128 |
+
"final_weight": datasets.Value("int64"),
|
129 |
+
"hours_per_week": datasets.Value("int64"),
|
130 |
+
"marital_status": datasets.Value("string"),
|
131 |
+
"native_country": datasets.Value("string"),
|
132 |
+
"occupation": datasets.Value("string"),
|
133 |
+
"relationship": datasets.Value("string"),
|
134 |
+
"sex": datasets.Value("int8"),
|
135 |
+
"workclass": datasets.Value("string"),
|
136 |
+
"over_threshold": datasets.Value("int8"),
|
137 |
+
"race": datasets.ClassLabel(num_classes=5, names=["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"])
|
138 |
+
}
|
139 |
}
|
140 |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
141 |
|