mstz commited on
Commit
8c4b0a2
·
1 Parent(s): 69b7192

Upload adult.py

Browse files
Files changed (1) hide show
  1. adult.py +8 -8
adult.py CHANGED
@@ -43,9 +43,9 @@ _BASE_FEATURE_NAMES = [
43
  "over_threshold",
44
  ]
45
  _ENCODING_DICS = {
46
- "sex": {
47
- "Male": 0,
48
- "Female": 1
49
  }
50
  }
51
  _RACE_ENCODING = {
@@ -119,7 +119,7 @@ features_types_per_config = {
119
  "occupation": datasets.Value("string"),
120
  "race": datasets.Value("string"),
121
  "relationship": datasets.Value("string"),
122
- "sex": datasets.Value("int8"),
123
  "workclass": datasets.Value("string"),
124
  "over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
125
  },
@@ -134,7 +134,7 @@ features_types_per_config = {
134
  "native_country": datasets.Value("string"),
135
  "occupation": datasets.Value("string"),
136
  "relationship": datasets.Value("string"),
137
- "sex": datasets.Value("int8"),
138
  "workclass": datasets.Value("string"),
139
  "over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
140
  },
@@ -149,7 +149,7 @@ features_types_per_config = {
149
  "native_country": datasets.Value("string"),
150
  "occupation": datasets.Value("string"),
151
  "relationship": datasets.Value("string"),
152
- "sex": datasets.Value("int8"),
153
  "workclass": datasets.Value("string"),
154
  "over_threshold": datasets.Value("int8"),
155
  "race": datasets.ClassLabel(num_classes=5, names=["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"])
@@ -169,7 +169,7 @@ class Adult(datasets.GeneratorBasedBuilder):
169
  DEFAULT_CONFIG = "income"
170
  BUILDER_CONFIGS = [
171
  AdultConfig(name="encoding",
172
- description="Encoding dictionaries."),
173
  AdultConfig(name="income",
174
  description="Adult for income threshold binary classification."),
175
  AdultConfig(name="income-no race",
@@ -234,7 +234,7 @@ class Adult(datasets.GeneratorBasedBuilder):
234
  return data
235
 
236
 
237
- def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
238
  data.drop("education", axis="columns", inplace=True)
239
  data = data.rename(columns={"threshold": "over_threshold"})
240
 
 
43
  "over_threshold",
44
  ]
45
  _ENCODING_DICS = {
46
+ "is_male": {
47
+ "Male": True,
48
+ "Female": False
49
  }
50
  }
51
  _RACE_ENCODING = {
 
119
  "occupation": datasets.Value("string"),
120
  "race": datasets.Value("string"),
121
  "relationship": datasets.Value("string"),
122
+ "is_male": datasets.Value("bool"),
123
  "workclass": datasets.Value("string"),
124
  "over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
125
  },
 
134
  "native_country": datasets.Value("string"),
135
  "occupation": datasets.Value("string"),
136
  "relationship": datasets.Value("string"),
137
+ "is_male": datasets.Value("bool"),
138
  "workclass": datasets.Value("string"),
139
  "over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
140
  },
 
149
  "native_country": datasets.Value("string"),
150
  "occupation": datasets.Value("string"),
151
  "relationship": datasets.Value("string"),
152
+ "is_male": datasets.Value("bool"),
153
  "workclass": datasets.Value("string"),
154
  "over_threshold": datasets.Value("int8"),
155
  "race": datasets.ClassLabel(num_classes=5, names=["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"])
 
169
  DEFAULT_CONFIG = "income"
170
  BUILDER_CONFIGS = [
171
  AdultConfig(name="encoding",
172
+ description="Encoding dictionaries for discrete features."),
173
  AdultConfig(name="income",
174
  description="Adult for income threshold binary classification."),
175
  AdultConfig(name="income-no race",
 
234
  return data
235
 
236
 
237
+ def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
238
  data.drop("education", axis="columns", inplace=True)
239
  data = data.rename(columns={"threshold": "over_threshold"})
240