Datasets:
Upload adult.py
Browse files
adult.py
CHANGED
@@ -43,9 +43,9 @@ _BASE_FEATURE_NAMES = [
|
|
43 |
"over_threshold",
|
44 |
]
|
45 |
_ENCODING_DICS = {
|
46 |
-
"
|
47 |
-
"Male":
|
48 |
-
"Female":
|
49 |
}
|
50 |
}
|
51 |
_RACE_ENCODING = {
|
@@ -119,7 +119,7 @@ features_types_per_config = {
|
|
119 |
"occupation": datasets.Value("string"),
|
120 |
"race": datasets.Value("string"),
|
121 |
"relationship": datasets.Value("string"),
|
122 |
-
"
|
123 |
"workclass": datasets.Value("string"),
|
124 |
"over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
125 |
},
|
@@ -134,7 +134,7 @@ features_types_per_config = {
|
|
134 |
"native_country": datasets.Value("string"),
|
135 |
"occupation": datasets.Value("string"),
|
136 |
"relationship": datasets.Value("string"),
|
137 |
-
"
|
138 |
"workclass": datasets.Value("string"),
|
139 |
"over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
140 |
},
|
@@ -149,7 +149,7 @@ features_types_per_config = {
|
|
149 |
"native_country": datasets.Value("string"),
|
150 |
"occupation": datasets.Value("string"),
|
151 |
"relationship": datasets.Value("string"),
|
152 |
-
"
|
153 |
"workclass": datasets.Value("string"),
|
154 |
"over_threshold": datasets.Value("int8"),
|
155 |
"race": datasets.ClassLabel(num_classes=5, names=["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"])
|
@@ -169,7 +169,7 @@ class Adult(datasets.GeneratorBasedBuilder):
|
|
169 |
DEFAULT_CONFIG = "income"
|
170 |
BUILDER_CONFIGS = [
|
171 |
AdultConfig(name="encoding",
|
172 |
-
description="Encoding dictionaries."),
|
173 |
AdultConfig(name="income",
|
174 |
description="Adult for income threshold binary classification."),
|
175 |
AdultConfig(name="income-no race",
|
@@ -234,7 +234,7 @@ class Adult(datasets.GeneratorBasedBuilder):
|
|
234 |
return data
|
235 |
|
236 |
|
237 |
-
def preprocess(self, data: pandas.DataFrame, config: str =
|
238 |
data.drop("education", axis="columns", inplace=True)
|
239 |
data = data.rename(columns={"threshold": "over_threshold"})
|
240 |
|
|
|
43 |
"over_threshold",
|
44 |
]
|
45 |
_ENCODING_DICS = {
|
46 |
+
"is_male": {
|
47 |
+
"Male": True,
|
48 |
+
"Female": False
|
49 |
}
|
50 |
}
|
51 |
_RACE_ENCODING = {
|
|
|
119 |
"occupation": datasets.Value("string"),
|
120 |
"race": datasets.Value("string"),
|
121 |
"relationship": datasets.Value("string"),
|
122 |
+
"is_male": datasets.Value("bool"),
|
123 |
"workclass": datasets.Value("string"),
|
124 |
"over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
125 |
},
|
|
|
134 |
"native_country": datasets.Value("string"),
|
135 |
"occupation": datasets.Value("string"),
|
136 |
"relationship": datasets.Value("string"),
|
137 |
+
"is_male": datasets.Value("bool"),
|
138 |
"workclass": datasets.Value("string"),
|
139 |
"over_threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
140 |
},
|
|
|
149 |
"native_country": datasets.Value("string"),
|
150 |
"occupation": datasets.Value("string"),
|
151 |
"relationship": datasets.Value("string"),
|
152 |
+
"is_male": datasets.Value("bool"),
|
153 |
"workclass": datasets.Value("string"),
|
154 |
"over_threshold": datasets.Value("int8"),
|
155 |
"race": datasets.ClassLabel(num_classes=5, names=["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"])
|
|
|
169 |
DEFAULT_CONFIG = "income"
|
170 |
BUILDER_CONFIGS = [
|
171 |
AdultConfig(name="encoding",
|
172 |
+
description="Encoding dictionaries for discrete features."),
|
173 |
AdultConfig(name="income",
|
174 |
description="Adult for income threshold binary classification."),
|
175 |
AdultConfig(name="income-no race",
|
|
|
234 |
return data
|
235 |
|
236 |
|
237 |
+
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
|
238 |
data.drop("education", axis="columns", inplace=True)
|
239 |
data = data.rename(columns={"threshold": "over_threshold"})
|
240 |
|