Datasets:
First commit
Browse files- README.md +16 -0
- adult.py +191 -0
- adult_tr.csv +0 -0
- adult_ts.csv +0 -0
README.md
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- {en} # Example: fr
|
4 |
+
tags:
|
5 |
+
- {adult} # Example: audio
|
6 |
+
- {tabular_classification} # Example: bio
|
7 |
+
- {binary_classification} # Example: bio
|
8 |
+
pretty_name: {Adult} # Example: SQuAD
|
9 |
+
size_categories:
|
10 |
+
- {10K<n<100K} # Example: n<1K, 100K<n<1M, …
|
11 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
12 |
+
- {tabular}
|
13 |
+
configs: # Optional for datasets with multiple configurations like glue.
|
14 |
+
- {income} # Example for glue: sst2
|
15 |
+
- {income-no race} # Example for glue: cola
|
16 |
+
- {race} # Example for glue: cola
|
adult.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Diva: A Fraud Detection Dataset"""
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
import pandas
|
6 |
+
|
7 |
+
|
8 |
+
VERSION = datasets.Version("1.0.0")
|
9 |
+
__ORIGINAL_FEATURE_NAMES = [
|
10 |
+
"age",
|
11 |
+
"workclass",
|
12 |
+
"final_weight",
|
13 |
+
"education", "education-num",
|
14 |
+
"marital_status",
|
15 |
+
"occupation",
|
16 |
+
"relationship",
|
17 |
+
"race",
|
18 |
+
"sex",
|
19 |
+
"capital_gain",
|
20 |
+
"capital_loss",
|
21 |
+
"hours_per_week",
|
22 |
+
"native_country",
|
23 |
+
"threshold"
|
24 |
+
]
|
25 |
+
__BASE_FEATURE_NAMES = [
|
26 |
+
"age",
|
27 |
+
"capital_gain",
|
28 |
+
"capital_loss",
|
29 |
+
"education",
|
30 |
+
"final_weight",
|
31 |
+
"hours_per_week",
|
32 |
+
"marital_status",
|
33 |
+
"native_country",
|
34 |
+
"occupation",
|
35 |
+
"race",
|
36 |
+
"relationship",
|
37 |
+
"sex",
|
38 |
+
"workclass",
|
39 |
+
"threshold",
|
40 |
+
]
|
41 |
+
__DESCRIPTION = "Adult dataset from the UCI ML repository."
|
42 |
+
__HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Adult"
|
43 |
+
__URLS = ("https://huggingface.co/datasets/mstz/adult/raw/adult.csv")
|
44 |
+
__CITATION = """
|
45 |
+
@inproceedings{DBLP:conf/kdd/Kohavi96,
|
46 |
+
author = {Ron Kohavi},
|
47 |
+
editor = {Evangelos Simoudis and
|
48 |
+
Jiawei Han and
|
49 |
+
Usama M. Fayyad},
|
50 |
+
title = {Scaling Up the Accuracy of Naive-Bayes Classifiers: {A} Decision-Tree
|
51 |
+
Hybrid},
|
52 |
+
booktitle = {Proceedings of the Second International Conference on Knowledge Discovery
|
53 |
+
and Data Mining (KDD-96), Portland, Oregon, {USA}},
|
54 |
+
pages = {202--207},
|
55 |
+
publisher = {{AAAI} Press},
|
56 |
+
year = {1996},
|
57 |
+
url = {http://www.aaai.org/Library/KDD/1996/kdd96-033.php},
|
58 |
+
timestamp = {Mon, 05 Jun 2017 13:20:21 +0200},
|
59 |
+
biburl = {https://dblp.org/rec/conf/kdd/Kohavi96.bib},
|
60 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
61 |
+
}"""
|
62 |
+
|
63 |
+
# Dataset info
|
64 |
+
__urls_per_split = {
|
65 |
+
"train": "https://huggingface.co/datasets/mstz/adult/raw/adult_tr.csv",
|
66 |
+
"test": "https://huggingface.co/datasets/mstz/adult/raw/adult_ts.csv"
|
67 |
+
}
|
68 |
+
__features_per_config = {
|
69 |
+
"income": datasets.Features({"age": datasets.Value("int8"),
|
70 |
+
"capital_gain": datasets.Value("float16"),
|
71 |
+
"capital_loss": datasets.Value("float16"),
|
72 |
+
"education": datasets.Value("int8"),
|
73 |
+
"final_weight": datasets.Value("int16"),
|
74 |
+
"hours_per_week": datasets.Value("int16"),
|
75 |
+
"marital_status": datasets.Value("string"),
|
76 |
+
"native_country": datasets.Value("string"),
|
77 |
+
"occupation": datasets.Value("string"),
|
78 |
+
"race": datasets.Value("string"),
|
79 |
+
"relationship": datasets.Value("string"),
|
80 |
+
"sex": datasets.Value("binary"),
|
81 |
+
"workclass": datasets.Value("binary"),
|
82 |
+
"threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
83 |
+
}),
|
84 |
+
"income-no race": datasets.Features({"age": datasets.Value("int8"),
|
85 |
+
"capital_gain": datasets.Value("float16"),
|
86 |
+
"capital_loss": datasets.Value("float16"),
|
87 |
+
"education": datasets.Value("int8"),
|
88 |
+
"final_weight": datasets.Value("int16"),
|
89 |
+
"hours_per_week": datasets.Value("int16"),
|
90 |
+
"marital_status": datasets.Value("string"),
|
91 |
+
"native_country": datasets.Value("string"),
|
92 |
+
"occupation": datasets.Value("string"),
|
93 |
+
"relationship": datasets.Value("string"),
|
94 |
+
"sex": datasets.Value("binary"),
|
95 |
+
"workclass": datasets.Value("binary"),
|
96 |
+
"threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
97 |
+
}),
|
98 |
+
"race": datasets.Features({"age": datasets.Value("int8"),
|
99 |
+
"capital_gain": datasets.Value("float16"),
|
100 |
+
"capital_loss": datasets.Value("float16"),
|
101 |
+
"education": datasets.Value("int8"),
|
102 |
+
"final_weight": datasets.Value("int16"),
|
103 |
+
"hours_per_week": datasets.Value("int16"),
|
104 |
+
"marital_status": datasets.Value("string"),
|
105 |
+
"native_country": datasets.Value("string"),
|
106 |
+
"occupation": datasets.Value("string"),
|
107 |
+
"relationship": datasets.Value("string"),
|
108 |
+
"sex": datasets.Value("binary"),
|
109 |
+
"workclass": datasets.Value("binary"),
|
110 |
+
"over_threshold": datasets.Value("binary"),
|
111 |
+
"race": datasets.ClassLabel(num_classes=5, names=["White",
|
112 |
+
"Black",
|
113 |
+
"Asian-Pac-Islander",
|
114 |
+
"Amer-Indian-Eskimo",
|
115 |
+
"Other"]),
|
116 |
+
}),
|
117 |
+
}
|
118 |
+
|
119 |
+
|
120 |
+
class AdultConfig(datasets.BuilderConfig):
|
121 |
+
def __init__(self, features: datasets.Features, labels_names: datasets.ClassLabel, **kwargs):
|
122 |
+
super(AdultConfig, self).__init__(version = VERSION, **kwargs)
|
123 |
+
self.features = features
|
124 |
+
self.labels.names = labels_names
|
125 |
+
|
126 |
+
|
127 |
+
class Adult(datasets.GeneratorBasedBuilder):
|
128 |
+
# dataset versions
|
129 |
+
DEFAULT_CONFIG = "income"
|
130 |
+
BUILDER_CONFIGS = [
|
131 |
+
datasets.AdultConfig(name="income", version=VERSION,
|
132 |
+
description="Adult for income threshold binary classification."),
|
133 |
+
datasets.AdultConfig(name="income-no race", version=VERSION,
|
134 |
+
description="Adult for income threshold binary classification, race excluded from features."),
|
135 |
+
datasets.AdultConfig(name="race", version=VERSION,
|
136 |
+
description="Adult for race multiclass classification."),
|
137 |
+
]
|
138 |
+
|
139 |
+
def _info(self):
|
140 |
+
if self.config_name not in __features_per_config:
|
141 |
+
raise ValueError(f"Unknown configuration: {self.config_name}")
|
142 |
+
|
143 |
+
info = datasets.DatasetInfo(description=__DESCRIPTION, citation=__CITATION, homepage=__HOMEPAGE,
|
144 |
+
features=__features_per_config[self.config_name])
|
145 |
+
|
146 |
+
return info
|
147 |
+
|
148 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
149 |
+
downloads = dl_manager.download_and_extract(__urls_per_split)
|
150 |
+
|
151 |
+
return [
|
152 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
153 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloads["test"]}),
|
154 |
+
]
|
155 |
+
|
156 |
+
def _generate_examples(self, filepath: str):
|
157 |
+
data = pandas.read_csv(filepath)
|
158 |
+
data = self.preprocess(data, config=self.config_name)
|
159 |
+
|
160 |
+
for row in data.iterrows():
|
161 |
+
data_row = dict(row)
|
162 |
+
row_id = hash(str(data_row))
|
163 |
+
|
164 |
+
yield row_id, data_row
|
165 |
+
|
166 |
+
def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
|
167 |
+
data.drop(["education"], inplace=True)
|
168 |
+
data = data[["age", "capital_gain", "capital_loss", "education", "final_weight",
|
169 |
+
"hours_per_week", "marital_status", "native_country", "occupation",
|
170 |
+
"race", "relationship", "sex", "workclass", "threshold"]]
|
171 |
+
data.columns = __BASE_FEATURE_NAMES
|
172 |
+
|
173 |
+
return data
|
174 |
+
|
175 |
+
def income_preprocessing(data: pandas.DataFrame) -> pandas.DataFrame:
|
176 |
+
data = data[__features_per_config["income"]]
|
177 |
+
|
178 |
+
return data
|
179 |
+
|
180 |
+
def income_norace_preprocessing(data: pandas.DataFrame) -> pandas.DataFrame:
|
181 |
+
data = data[__features_per_config["income-no race"]]
|
182 |
+
|
183 |
+
return data
|
184 |
+
|
185 |
+
def race_preprocessing(data: pandas.DataFrame) -> pandas.DataFrame:
|
186 |
+
data["over_threshold"] = df.threshold
|
187 |
+
data = data[__features_per_config["race"]]
|
188 |
+
|
189 |
+
return data
|
190 |
+
|
191 |
+
# TODO: add custom split?
|
adult_tr.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
adult_ts.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|