File size: 7,655 Bytes
113dc2c
0dec378
 
27e4a6a
d4fba6d
4816388
 
2fc432b
4816388
d95dbe9
32fdddd
219d097
471c590
52a0784
757da8f
27e4a6a
4816388
27e4a6a
d95dbe9
4816388
d95dbe9
c79e0ac
f0f180b
 
 
 
 
c79e0ac
f0f180b
 
 
 
 
1a52ee5
68ef0f8
f0f180b
 
 
 
 
 
 
 
 
c79e0ac
f0f180b
 
481dde5
d95dbe9
f0f180b
 
 
c79e0ac
 
 
 
4816388
c79e0ac
dcb68b8
 
f0f180b
4816388
 
f0f180b
27e4a6a
f0f180b
dcb68b8
4816388
 
 
f0f180b
 
 
c79e0ac
f0f180b
27e4a6a
4816388
9ce8f90
812aaeb
f0f180b
4816388
812aaeb
f0f180b
dcb68b8
812aaeb
dcb68b8
5d264e2
f0f180b
87f81a0
f0f180b
ac00586
f0f180b
 
 
9ce8f90
757da8f
27e4a6a
dcb68b8
 
 
 
 
4816388
 
dcb68b8
4816388
 
dcb68b8
4816388
 
dcb68b8
9ce8f90
 
 
 
 
 
 
 
 
 
 
4816388
 
9ce8f90
4816388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ce8f90
 
c05358b
 
9ce8f90
 
dcb68b8
c05358b
 
 
 
 
 
 
 
 
 
e60811a
4816388
 
 
 
9ce8f90
4816388
 
 
dcb68b8
4816388
 
9ce8f90
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import numpy as np
import random
from pathlib import Path
from PIL import Image
import streamlit as st
from huggingface_hub import InferenceClient, AsyncInferenceClient
from gradio_client import Client, handle_file
import asyncio

MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
DATA_PATH = Path("./data")
DATA_PATH.mkdir(exist_ok=True)

def enable_lora(lora_add, basemodel):
    return lora_add if lora_add else basemodel

async def generate_image(combined_prompt, model, width, height, scales, steps, seed):
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
        seed = int(seed)
        image = await client.text_to_image(
            prompt=combined_prompt, height=height, width=width, guidance_scale=scales,
            num_inference_steps=steps, model=model
        )
        return image, seed
    except Exception as e:
        return f"Error al generar imagen: {e}", None

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    try:
        client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
        result = client.predict(
            input_image=handle_file(img_path), prompt=prompt, negative_prompt="",
            seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6,
            controlnet_decay=1, condition_scale=6, tile_width=112,
            tile_height=144, denoise_strength=0.35, num_inference_steps=18,
            solver="DDIM", api_name="/process"
        )
        return result[1] if isinstance(result, list) and len(result) > 1 else None
    except Exception as e:
        return None

async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
    model = enable_lora(lora_model, basemodel) if process_lora else basemodel
    improved_prompt = await improve_prompt(prompt)
    combined_prompt = f"{prompt} {improved_prompt}"
    
    if seed == -1:
        seed = random.randint(0, MAX_SEED)
    seed = int(seed)
    progress_bar = st.progress(0)
    image, seed = await generate_image(combined_prompt, model, width, height, scales, steps, seed)
    progress_bar.progress(50)

    if isinstance(image, str) and image.startswith("Error"):
        progress_bar.empty()
        return [image, None, combined_prompt]

    image_path = DATA_PATH / f"image_{seed}.jpg"
    image.save(image_path, format="JPEG")

    prompt_file_path = DATA_PATH / f"prompt_{seed}.txt"
    with open(prompt_file_path, "w") as prompt_file:
        prompt_file.write(combined_prompt)

    if process_upscale:
        upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor)
        if upscale_image_path:
            upscale_image = Image.open(upscale_image_path)
            upscale_image.save(DATA_PATH / f"upscale_image_{seed}.jpg", format="JPEG")
            progress_bar.progress(100)
            image_path.unlink()
            return [str(DATA_PATH / f"upscale_image_{seed}.jpg"), str(prompt_file_path)]
        else:
            progress_bar.empty()
            return [str(image_path), str(prompt_file_path)]
    else:
        progress_bar.progress(100)
        return [str(image_path), str(prompt_file_path)]

async def improve_prompt(prompt):
    try:
        instruction = ("With this idea, describe in English a detailed txt2img prompt in a single paragraph of up to 100 characters maximum, developing atmosphere, characters, lighting, and cameras.")
        formatted_prompt = f"{prompt}: {instruction}"
        response = llm_client.text_generation(formatted_prompt, max_new_tokens=200)
        improved_text = response['generated_text'].strip() if 'generated_text' in response else response.strip()
        return improved_text
    except Exception as e:
        return f"Error mejorando el prompt: {e}"

def get_storage():
    files = [{"name": str(file.resolve()), "size": file.stat().st_size,}
        for file in DATA_PATH.glob("*.jpg") 
        if file.is_file()]
    usage = sum([f['size'] for f in files])
    return [file["name"] for file in files], f"Uso total: {usage/(1024.0 ** 3):.3f}GB"

def get_prompts():
    prompt_files = [file for file in DATA_PATH.glob("*.txt") if file.is_file()]
    return {file.stem.replace("prompt_", ""): file for file in prompt_files}

def run_gen():
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    prompt_to_use = st.session_state.get('improved_prompt', prompt)
    return loop.run_until_complete(gen(prompt_to_use, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora))

def delete_image(image_path):
    try:
        if Path(image_path).exists():
            Path(image_path).unlink()
            st.success(f"Imagen {image_path} borrada.")
        else:
            st.error("El archivo de imagen no existe.")
    except Exception as e:
        st.error(f"Error al borrar la imagen: {e}")

st.set_page_config(layout="wide")
st.title("Generador de Imágenes FLUX")
prompt = st.sidebar.text_input("Descripción de la imagen")
basemodel = st.sidebar.selectbox("Modelo Base", ["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"])
lora_model = st.sidebar.selectbox("LORA Realismo", ["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"])
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9"])
process_lora = st.sidebar.checkbox("Procesar LORA")
process_upscale = st.sidebar.checkbox("Procesar Escalador")

if format_option == "9:16":
    width = st.sidebar.slider("Ancho", 512, 720, 720, step=8)
    height = st.sidebar.slider("Alto", 912, 1280, 1280, step=8)
else:
    width = st.sidebar.slider("Ancho", 512, 1280, 1280, step=8)
    height = st.sidebar.slider("Alto", 512, 720, 720, step=8)

upscale_factor = st.sidebar.selectbox("Factor de Escala", [2, 4, 8], index=0)
scales = st.sidebar.slider("Escalado", 1, 20, 10)
steps = st.sidebar.slider("Pasos", 1, 100, 20)
seed = st.sidebar.number_input("Semilla", value=-1)

if st.sidebar.button("Mejorar prompt"):
    improved_prompt = asyncio.run(improve_prompt(prompt))
    st.session_state.improved_prompt = improved_prompt
    st.write(f"{improved_prompt}")

if st.sidebar.button("Generar Imagen"):
    with st.spinner("Generando imagen..."):
        result = run_gen()  
        image_paths = result[0]  
        prompt_file = result[1]
    
    st.write(f"Image paths: {image_paths}")  
    
    if image_paths:
        if Path(image_paths).exists():
            st.image(image_paths, caption="Imagen Generada")
        else:
            st.error("El archivo de imagen no existe.")
        
        if prompt_file and Path(prompt_file).exists():
            prompt_text = Path(prompt_file).read_text()
            st.write(f"Prompt utilizado: {prompt_text}")
        else:
            st.write("El archivo del prompt no está disponible.")

files, usage = get_storage()
st.text(usage)
cols = st.columns(6)
prompts = get_prompts()

for idx, file in enumerate(files):
    with cols[idx % 6]:
        image = Image.open(file)
        prompt_file = prompts.get(Path(file).stem.replace("image_", ""), None)
        prompt_text = Path(prompt_file).read_text() if prompt_file else "No disponible"
        st.image(image, caption=f"Imagen {idx+1}")
        st.write(f"Prompt: {prompt_text}")
        if st.button(f"Borrar Imagen {idx+1}", key=f"delete_{idx}"):
            os.remove(file)
            if prompt_file:
                os.remove(prompt_file)