Spaces:
Running
Running
salomonsky
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,18 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
5 |
-
from huggingface_hub import AsyncInferenceClient
|
6 |
-
from translatepy import Translator
|
7 |
-
import requests
|
8 |
-
import re
|
9 |
import asyncio
|
10 |
from PIL import Image
|
11 |
from gradio_client import Client, handle_file
|
12 |
-
from huggingface_hub import login
|
13 |
from gradio_imageslider import ImageSlider
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
17 |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
|
|
18 |
client = AsyncInferenceClient()
|
|
|
19 |
|
20 |
def enable_lora(lora_add, basemodel):
|
21 |
return basemodel if not lora_add else lora_add
|
@@ -25,11 +23,10 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
|
|
25 |
if seed == -1:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
seed = int(seed)
|
28 |
-
text =
|
29 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
30 |
return image, seed
|
31 |
except Exception as e:
|
32 |
-
print(f"Error generando imagen: {e}")
|
33 |
return f"Error al generar imagen: {e}", None
|
34 |
|
35 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
@@ -38,7 +35,6 @@ def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
|
38 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
39 |
return result[1]
|
40 |
except Exception as e:
|
41 |
-
print(f"Error escalando imagen: {e}")
|
42 |
return None
|
43 |
|
44 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
@@ -58,11 +54,19 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
|
|
58 |
upscale_image.save("upscale_image.jpg", format="JPEG")
|
59 |
return [image_path, "upscale_image.jpg"]
|
60 |
else:
|
61 |
-
print("Error: La ruta de la imagen escalada es None")
|
62 |
return [image_path, image_path]
|
63 |
else:
|
64 |
return [image_path, image_path]
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
css = """
|
67 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
68 |
"""
|
@@ -79,6 +83,11 @@ with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
|
79 |
process_lora = gr.Checkbox(label="Procesar LORA")
|
80 |
process_upscale = gr.Checkbox(label="Procesar Escalador")
|
81 |
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
with gr.Accordion(label="Opciones Avanzadas", open=False):
|
84 |
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
|
@@ -88,5 +97,5 @@ with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
|
88 |
seed = gr.Number(label="Semilla", value=-1)
|
89 |
|
90 |
btn = gr.Button("Generar")
|
91 |
-
btn.click(fn=gen, inputs=[
|
92 |
-
demo.launch()
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
5 |
+
from huggingface_hub import AsyncInferenceClient, InferenceClient
|
|
|
|
|
|
|
6 |
import asyncio
|
7 |
from PIL import Image
|
8 |
from gradio_client import Client, handle_file
|
|
|
9 |
from gradio_imageslider import ImageSlider
|
10 |
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
12 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
13 |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
14 |
+
|
15 |
client = AsyncInferenceClient()
|
16 |
+
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
17 |
|
18 |
def enable_lora(lora_add, basemodel):
|
19 |
return basemodel if not lora_add else lora_add
|
|
|
23 |
if seed == -1:
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
seed = int(seed)
|
26 |
+
text = prompt + "," + lora_word
|
27 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
28 |
return image, seed
|
29 |
except Exception as e:
|
|
|
30 |
return f"Error al generar imagen: {e}", None
|
31 |
|
32 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
|
|
35 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
36 |
return result[1]
|
37 |
except Exception as e:
|
|
|
38 |
return None
|
39 |
|
40 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
|
|
54 |
upscale_image.save("upscale_image.jpg", format="JPEG")
|
55 |
return [image_path, "upscale_image.jpg"]
|
56 |
else:
|
|
|
57 |
return [image_path, image_path]
|
58 |
else:
|
59 |
return [image_path, image_path]
|
60 |
|
61 |
+
def improve_prompt(prompt):
|
62 |
+
try:
|
63 |
+
instruction = "Mejora mi prompt para texto a imagen en ingl茅s con estilo, cinematograf铆a, c谩maras, atm贸sfera e iluminaci贸n para la mejor calidad, de m谩ximo 200 palabras."
|
64 |
+
formatted_prompt = f"{instruction}: {prompt}"
|
65 |
+
response = llm_client.text_generation(formatted_prompt, max_new_tokens=200)
|
66 |
+
return response.generated_text.strip()
|
67 |
+
except Exception as e:
|
68 |
+
return f"Error mejorando el prompt: {e}"
|
69 |
+
|
70 |
css = """
|
71 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
72 |
"""
|
|
|
83 |
process_lora = gr.Checkbox(label="Procesar LORA")
|
84 |
process_upscale = gr.Checkbox(label="Procesar Escalador")
|
85 |
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
|
86 |
+
|
87 |
+
improved_prompt = gr.Textbox(label="Prompt Mejorado", interactive=False)
|
88 |
+
|
89 |
+
improve_btn = gr.Button("Mejora mi prompt")
|
90 |
+
improve_btn.click(fn=improve_prompt, inputs=[prompt], outputs=improved_prompt)
|
91 |
|
92 |
with gr.Accordion(label="Opciones Avanzadas", open=False):
|
93 |
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
|
|
|
97 |
seed = gr.Number(label="Semilla", value=-1)
|
98 |
|
99 |
btn = gr.Button("Generar")
|
100 |
+
btn.click(fn=gen, inputs=[improved_prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res)
|
101 |
+
demo.launch()
|