salomonsky commited on
Commit
2fc432b
·
verified ·
1 Parent(s): de6051a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -140
app.py CHANGED
@@ -8,156 +8,55 @@ import requests
8
  import re
9
  import asyncio
10
  from PIL import Image
 
 
 
11
 
12
  translator = Translator()
13
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
14
  basemodel = "black-forest-labs/FLUX.1-schnell"
15
  MAX_SEED = np.iinfo(np.int32).max
 
 
16
 
17
- CSS = """
18
- footer {
19
- visibility: hidden;
20
- }
21
- """
22
-
23
- JS = """function () {
24
- gradioURL = window.location.href
25
- if (!gradioURL.endsWith('?__theme=dark')) {
26
- window.location.replace(gradioURL + '?__theme=dark');
27
- }
28
- }"""
29
-
30
- def enable_lora(lora_add):
31
- if not lora_add:
32
- return basemodel
33
- else:
34
- return lora_add
35
-
36
- async def generate_image(
37
- prompt:str,
38
- model:str,
39
- lora_word:str,
40
- width:int=768,
41
- height:int=1024,
42
- scales:float=3.5,
43
- steps:int=24,
44
- seed:int=-1):
45
-
46
- if seed == -1:
47
- seed = random.randint(0, MAX_SEED)
48
  seed = int(seed)
49
- print(f'prompt:{prompt}')
50
-
51
  text = str(translator.translate(prompt, 'English')) + "," + lora_word
52
-
53
  client = AsyncInferenceClient()
54
- try:
55
- image = await client.text_to_image(
56
- prompt=text,
57
- height=height,
58
- width=width,
59
- guidance_scale=scales,
60
- num_inference_steps=steps,
61
- model=model,
62
- )
63
- except Exception as e:
64
- raise gr.Error(f"Error in {e}")
65
-
66
  return image, seed
67
 
68
- async def gen(
69
- prompt:str,
70
- lora_add:str="",
71
- lora_word:str="",
72
- width:int=768,
73
- height:int=1024,
74
- scales:float=3.5,
75
- steps:int=24,
76
- seed:int=-1,
77
- progress=gr.Progress(track_tqdm=True)
78
- ):
79
  model = enable_lora(lora_add)
80
- print(model)
81
- image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
82
- return image, seed
83
-
84
- with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
85
- gr.HTML("<h1><center>Flux Lab Light</center></h1>")
86
- with gr.Row():
87
- with gr.Column(scale=4):
88
- with gr.Row():
89
- img = gr.Image(type="filepath", label='flux Generated Image', height=600)
90
- with gr.Row():
91
- prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
92
- sendBtn = gr.Button(scale=1, variant='primary')
93
- with gr.Accordion("Advanced Options", open=True):
94
- with gr.Column(scale=1):
95
- width = gr.Slider(
96
- label="Width",
97
- minimum=512,
98
- maximum=1280,
99
- step=8,
100
- value=768,
101
- )
102
- height = gr.Slider(
103
- label="Height",
104
- minimum=512,
105
- maximum=1280,
106
- step=8,
107
- value=1024,
108
- )
109
- scales = gr.Slider(
110
- label="Guidance",
111
- minimum=3.5,
112
- maximum=7,
113
- step=0.1,
114
- value=3.5,
115
- )
116
- steps = gr.Slider(
117
- label="Steps",
118
- minimum=1,
119
- maximum=100,
120
- step=1,
121
- value=24,
122
- )
123
- seed = gr.Slider(
124
- label="Seeds",
125
- minimum=-1,
126
- maximum=MAX_SEED,
127
- step=1,
128
- value=-1,
129
- )
130
- lora_add = gr.Textbox(
131
- label="Add Flux LoRA",
132
- info="Copy the HF LoRA model name here",
133
- lines=1,
134
- placeholder="Please use Warm status model",
135
- )
136
- lora_word = gr.Textbox(
137
- label="Add Flux LoRA Trigger Word",
138
- info="Add the Trigger Word",
139
- lines=1,
140
- value="",
141
- )
142
 
143
- gr.on(
144
- triggers=[
145
- prompt.submit,
146
- sendBtn.click,
147
- ],
148
- fn=gen,
149
- inputs=[
150
- prompt,
151
- lora_add,
152
- lora_word,
153
- width,
154
- height,
155
- scales,
156
- steps,
157
- seed
158
- ],
159
- outputs=[img, seed]
160
- )
161
-
162
- if __name__ == "__main__":
163
- demo.queue(api_open=False).launch(show_api=False, share=False)
 
 
 
8
  import re
9
  import asyncio
10
  from PIL import Image
11
+ from gradio_client import Client, handle_file
12
+ from huggingface_hub import login
13
+ from gradio_imageslider import ImageSlider
14
 
15
  translator = Translator()
16
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
17
  basemodel = "black-forest-labs/FLUX.1-schnell"
18
  MAX_SEED = np.iinfo(np.int32).max
19
+ CSS = "footer { visibility: hidden; }"
20
+ JS = "function () { gradioURL = window.location.href; if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }"
21
 
22
+ def enable_lora(lora_add): return basemodel if not lora_add else lora_add
23
+ async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
24
+ if seed == -1: seed = random.randint(0, MAX_SEED)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  seed = int(seed)
 
 
26
  text = str(translator.translate(prompt, 'English')) + "," + lora_word
 
27
  client = AsyncInferenceClient()
28
+ try: image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
29
+ except Exception as e: raise gr.Error(f"Error in {e}")
 
 
 
 
 
 
 
 
 
 
30
  return image, seed
31
 
32
+ async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, progress):
 
 
 
 
 
 
 
 
 
 
33
  model = enable_lora(lora_add)
34
+ image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
35
+ image_path = "temp_image.png"
36
+ image.save(image_path)
37
+ upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
38
+ return upscale_image, seed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
+ def get_upscale_finegrain(prompt, img_path, upscale_factor):
41
+ client = Client("finegrain/finegrain-image-enhancer")
42
+ result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
43
+ return result[1]
44
+
45
+ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
46
+ gr.HTML("<h1><center>Flux Lab Light</center></h1>");
47
+ with gr.Row():
48
+ with gr.Column(scale=4):
49
+ with gr.Row(): img = gr.Image(type="filepath", label='flux Generated Image', height=600);
50
+ with gr.Row(): prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6); sendBtn = gr.Button(scale=1, variant='primary');
51
+ with gr.Accordion("Advanced Options", open=True):
52
+ with gr.Column(scale=1):
53
+ width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=768);
54
+ height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1024);
55
+ scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5);
56
+ steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24);
57
+ seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1);
58
+ lora_add = gr.Textbox(label="Add Flux LoRA", info="Copy the HF LoRA model name here", lines=1, placeholder="Please use Warm status model");
59
+ lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="");
60
+ upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 3, 4], value=2, scale=2)
61
+ gr.on([prompt.submit, sendBtn.click], gen, [prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor], [img, seed])
62
+ demo.queue(api_open=False).launch(show_api=False, share=False)