Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,17 +22,7 @@ if not os.path.exists('GFPGANv1.4.pth'):
|
|
| 22 |
|
| 23 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 24 |
model_path = 'GFPGANv1.4.pth'
|
| 25 |
-
gfpgan = GFPGANer(
|
| 26 |
-
model_path=model_path,
|
| 27 |
-
upscale_factor=4,
|
| 28 |
-
arch='clean',
|
| 29 |
-
channel_multiplier=2,
|
| 30 |
-
model_name='GPFGAN',
|
| 31 |
-
device=device
|
| 32 |
-
)
|
| 33 |
-
|
| 34 |
-
def enable_lora(lora_add, basemodel):
|
| 35 |
-
return basemodel if not lora_add else lora_add
|
| 36 |
|
| 37 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
| 38 |
try:
|
|
@@ -47,19 +37,19 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
|
|
| 47 |
print(f"Error generating image: {e}")
|
| 48 |
return None, None
|
| 49 |
|
| 50 |
-
def
|
| 51 |
try:
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
return result[1]
|
| 55 |
except Exception as e:
|
| 56 |
print(f"Error upscale image: {e}")
|
| 57 |
return None
|
| 58 |
|
| 59 |
-
def
|
| 60 |
try:
|
| 61 |
-
|
| 62 |
-
|
|
|
|
| 63 |
except Exception as e:
|
| 64 |
print(f"Error upscale image: {e}")
|
| 65 |
return None
|
|
@@ -74,10 +64,10 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
|
|
| 74 |
image.save(image_path, format="JPEG")
|
| 75 |
|
| 76 |
if process_upscale:
|
| 77 |
-
if upscale_model == "
|
| 78 |
-
upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
| 79 |
-
elif upscale_model == "GPFGAN":
|
| 80 |
upscale_image = get_upscale_gfpgan(prompt, image_path)
|
|
|
|
|
|
|
| 81 |
upscale_image_path = "upscale_image.jpg"
|
| 82 |
upscale_image.save(upscale_image_path, format="JPEG")
|
| 83 |
return [image_path, upscale_image_path]
|
|
@@ -100,25 +90,20 @@ with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
|
| 100 |
process_lora = gr.Checkbox(label="Procesar LORA")
|
| 101 |
process_upscale = gr.Checkbox(label="Procesar Escalador")
|
| 102 |
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
|
| 103 |
-
upscale_model = gr.Radio(label="Modelo de Escalado", choices=["
|
| 104 |
|
| 105 |
with gr.Accordion(label="Opciones Avanzadas", open=False):
|
| 106 |
-
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=
|
| 107 |
-
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=
|
| 108 |
-
scales = gr.Slider(label="
|
| 109 |
-
steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=
|
| 110 |
-
seed = gr.
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
fn=lambda: None,
|
| 115 |
-
inputs=None,
|
| 116 |
-
outputs=[output_res],
|
| 117 |
-
queue=False
|
| 118 |
-
).then(
|
| 119 |
fn=gen,
|
| 120 |
-
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora, upscale_model],
|
| 121 |
-
outputs=
|
| 122 |
)
|
| 123 |
|
| 124 |
demo.launch()
|
|
|
|
| 22 |
|
| 23 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 24 |
model_path = 'GFPGANv1.4.pth'
|
| 25 |
+
gfpgan = GFPGANer(model_path=model_path, upscale_factor=4, arch='clean', channel_multiplier=2, model_name='GPFGAN', device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
| 28 |
try:
|
|
|
|
| 37 |
print(f"Error generating image: {e}")
|
| 38 |
return None, None
|
| 39 |
|
| 40 |
+
def get_upscale_gfpgan(prompt, img_path):
|
| 41 |
try:
|
| 42 |
+
img = gfpgan.enhance(img_path)
|
| 43 |
+
return img
|
|
|
|
| 44 |
except Exception as e:
|
| 45 |
print(f"Error upscale image: {e}")
|
| 46 |
return None
|
| 47 |
|
| 48 |
+
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
| 49 |
try:
|
| 50 |
+
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
|
| 51 |
+
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
| 52 |
+
return result[1]
|
| 53 |
except Exception as e:
|
| 54 |
print(f"Error upscale image: {e}")
|
| 55 |
return None
|
|
|
|
| 64 |
image.save(image_path, format="JPEG")
|
| 65 |
|
| 66 |
if process_upscale:
|
| 67 |
+
if upscale_model == "GPFGAN":
|
|
|
|
|
|
|
| 68 |
upscale_image = get_upscale_gfpgan(prompt, image_path)
|
| 69 |
+
elif upscale_model == "Finegrain":
|
| 70 |
+
upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
| 71 |
upscale_image_path = "upscale_image.jpg"
|
| 72 |
upscale_image.save(upscale_image_path, format="JPEG")
|
| 73 |
return [image_path, upscale_image_path]
|
|
|
|
| 90 |
process_lora = gr.Checkbox(label="Procesar LORA")
|
| 91 |
process_upscale = gr.Checkbox(label="Procesar Escalador")
|
| 92 |
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
|
| 93 |
+
upscale_model = gr.Radio(label="Modelo de Escalado", choices=["GPFGAN", "Finegrain"], value="GPFGAN")
|
| 94 |
|
| 95 |
with gr.Accordion(label="Opciones Avanzadas", open=False):
|
| 96 |
+
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=512)
|
| 97 |
+
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=512)
|
| 98 |
+
scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=10)
|
| 99 |
+
steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=20)
|
| 100 |
+
seed = gr.Number(label="Semilla", value=-1)
|
| 101 |
+
|
| 102 |
+
btn = gr.Button("Generar")
|
| 103 |
+
btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
fn=gen,
|
| 105 |
+
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora, upscale_model,],
|
| 106 |
+
outputs=output_res,
|
| 107 |
)
|
| 108 |
|
| 109 |
demo.launch()
|