salomonsky commited on
Commit
c79e0ac
1 Parent(s): 043b00d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -7
app.py CHANGED
@@ -16,14 +16,13 @@ llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
16
  def enable_lora(lora_add, basemodel):
17
  return basemodel if not lora_add else lora_add
18
 
19
- async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
20
  try:
21
  if seed == -1:
22
  seed = random.randint(0, MAX_SEED)
23
  seed = int(seed)
24
- text = prompt + "," + lora_word
25
  image = await client.text_to_image(
26
- prompt=text, height=height, width=width, guidance_scale=scales,
27
  num_inference_steps=steps, model=model
28
  )
29
  return image, seed
@@ -40,7 +39,7 @@ def get_upscale_finegrain(prompt, img_path, upscale_factor):
40
  tile_height=144, denoise_strength=0.35, num_inference_steps=18,
41
  solver="DDIM", api_name="/process"
42
  )
43
- return result[1]
44
  except Exception as e:
45
  return None
46
 
@@ -48,7 +47,12 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
48
  model = enable_lora(lora_model, basemodel) if process_lora else basemodel
49
  improved_prompt = await improve_prompt(prompt)
50
  combined_prompt = f"{prompt} {improved_prompt}"
51
- image, seed = await generate_image(combined_prompt, model, "", width, height, scales, steps, seed)
 
 
 
 
 
52
 
53
  if isinstance(image, str) and image.startswith("Error"):
54
  return [image, None]
@@ -58,7 +62,7 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
58
 
59
  if process_upscale:
60
  upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor)
61
- if upscale_image_path is not None:
62
  upscale_image = Image.open(upscale_image_path)
63
  upscale_image.save("upscale_image.jpg", format="JPEG")
64
  return [image_path, "upscale_image.jpg"]
@@ -91,7 +95,7 @@ with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
91
  prompt = gr.Textbox(label="Descripción de imágen")
92
  basemodel_choice = gr.Dropdown(
93
  label="Modelo",
94
- choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV", "enhanceaiteam/Flux-uncensored"],
95
  value="black-forest-labs/FLUX.1-schnell"
96
  )
97
  lora_model_choice = gr.Dropdown(
 
16
  def enable_lora(lora_add, basemodel):
17
  return basemodel if not lora_add else lora_add
18
 
19
+ async def generate_image(combined_prompt, model, width, height, scales, steps, seed):
20
  try:
21
  if seed == -1:
22
  seed = random.randint(0, MAX_SEED)
23
  seed = int(seed)
 
24
  image = await client.text_to_image(
25
+ prompt=combined_prompt, height=height, width=width, guidance_scale=scales,
26
  num_inference_steps=steps, model=model
27
  )
28
  return image, seed
 
39
  tile_height=144, denoise_strength=0.35, num_inference_steps=18,
40
  solver="DDIM", api_name="/process"
41
  )
42
+ return result[1] if isinstance(result, list) and len(result) > 1 else None
43
  except Exception as e:
44
  return None
45
 
 
47
  model = enable_lora(lora_model, basemodel) if process_lora else basemodel
48
  improved_prompt = await improve_prompt(prompt)
49
  combined_prompt = f"{prompt} {improved_prompt}"
50
+
51
+ if seed == -1:
52
+ seed = random.randint(0, MAX_SEED)
53
+ seed = int(seed)
54
+
55
+ image, seed = await generate_image(combined_prompt, model, width, height, scales, steps, seed)
56
 
57
  if isinstance(image, str) and image.startswith("Error"):
58
  return [image, None]
 
62
 
63
  if process_upscale:
64
  upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor)
65
+ if upscale_image_path:
66
  upscale_image = Image.open(upscale_image_path)
67
  upscale_image.save("upscale_image.jpg", format="JPEG")
68
  return [image_path, "upscale_image.jpg"]
 
95
  prompt = gr.Textbox(label="Descripción de imágen")
96
  basemodel_choice = gr.Dropdown(
97
  label="Modelo",
98
+ choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"],
99
  value="black-forest-labs/FLUX.1-schnell"
100
  )
101
  lora_model_choice = gr.Dropdown(