File size: 35,393 Bytes
4e0e2d3
38b82b3
5d39f28
 
b96c8c5
 
4e0e2d3
b96c8c5
 
 
5d39f28
4f7e95f
b96c8c5
3b2835d
 
 
 
4f7e95f
3b2835d
15347cd
 
 
 
4f7e95f
15347cd
b96c8c5
 
 
5d39f28
 
a447492
5d39f28
 
84736d2
b96c8c5
 
 
a447492
 
5d39f28
 
 
b96c8c5
5d39f28
b96c8c5
80c0bfe
b96c8c5
 
 
 
 
 
 
5d39f28
e18e8e2
5d39f28
b96c8c5
a6a747f
b96c8c5
 
4f7e95f
5d39f28
b96c8c5
58f80cc
b96c8c5
 
4f7e95f
5d39f28
b96c8c5
3c02d45
b96c8c5
3c02d45
4f7e95f
3c02d45
b96c8c5
3c02d45
b96c8c5
3c02d45
4f7e95f
3c02d45
b96c8c5
 
 
 
4f7e95f
b96c8c5
0a6e1c9
 
 
 
 
 
071e791
 
 
 
4f7e95f
071e791
 
 
 
 
4f7e95f
071e791
b96c8c5
3c02d45
b96c8c5
3c02d45
4f7e95f
b96c8c5
a447492
 
 
 
4f7e95f
a447492
b96c8c5
5d39f28
b96c8c5
5d39f28
4f7e95f
5d39f28
b96c8c5
5d39f28
b96c8c5
5d39f28
4f7e95f
ddd360b
 
 
 
 
 
e4a20eb
 
 
 
 
 
5d39f28
b96c8c5
5d39f28
b96c8c5
 
4f7e95f
b96c8c5
 
 
 
 
4f7e95f
5d39f28
ec25ef6
 
84736d2
ec25ef6
 
 
 
 
 
 
 
4f7e95f
ec25ef6
b96c8c5
5d39f28
84736d2
b96c8c5
 
 
5d39f28
b96c8c5
 
 
58f80cc
4f7e95f
b96c8c5
cec477c
 
84736d2
cec477c
 
 
 
 
 
 
 
 
 
4f7e95f
cec477c
cbbd444
586b631
cbbd444
586b631
cbbd444
 
 
 
 
 
 
 
 
 
586b631
cbbd444
 
 
 
586b631
cbbd444
586b631
 
cbbd444
586b631
cbbd444
 
 
 
 
586b631
cbbd444
 
cec477c
 
 
 
4f7e95f
cec477c
7b077a3
5d39f28
26a1cd3
 
 
 
0a6e1c9
 
 
54b262a
26a1cd3
 
 
 
 
 
 
 
 
 
 
 
 
7b077a3
0a6e1c9
 
26a1cd3
0a6e1c9
26a1cd3
 
0a6e1c9
 
 
 
26a1cd3
0a6e1c9
 
26a1cd3
0a6e1c9
 
 
 
7b077a3
 
0a6e1c9
 
 
 
7b077a3
 
0a6e1c9
54b262a
45e93a3
7b077a3
 
 
 
 
 
54b262a
 
7b077a3
 
cec477c
45e93a3
5d39f28
8e3f95a
 
cec477c
 
 
f7b4ac7
 
 
e4a20eb
 
 
cec477c
29cefb0
cec477c
 
 
 
 
8e3f95a
 
 
 
 
 
 
cec477c
84736d2
8e3f95a
 
c6a81f6
 
 
 
 
 
 
 
cec477c
 
5d39f28
cec477c
 
 
b96c8c5
cec477c
 
8e3f95a
 
cec477c
 
586b631
cbbd444
 
 
8e3f95a
cbbd444
 
 
 
 
 
8e3f95a
 
0a6e1c9
26a1cd3
0a6e1c9
 
26a1cd3
0a6e1c9
8e3f95a
5d39f28
7b077a3
 
26a1cd3
7b077a3
26a1cd3
7b077a3
cbbd444
cec477c
5d39f28
cec477c
b96c8c5
00e74d5
26a1cd3
 
c6a81f6
 
84736d2
c6a81f6
cec477c
c6a81f6
 
 
 
b96c8c5
d680fb0
8e3f95a
586b631
5d39f28
 
 
8e3f95a
2115a66
b96c8c5
 
 
 
e18e8e2
ec25ef6
cec477c
2115a66
c643307
 
 
 
 
 
 
 
e18e8e2
c643307
 
 
 
 
 
586b631
cbbd444
586b631
cbbd444
586b631
c643307
 
 
 
 
 
 
 
5d39f28
c1cbdbc
b96c8c5
 
 
586b631
194a41e
c75a58b
54b262a
c75a58b
 
739e268
 
5d39f28
739e268
 
 
 
 
e4a20eb
739e268
 
 
 
 
e4a20eb
739e268
 
 
5d39f28
 
739e268
 
 
 
 
ec25ef6
e18e8e2
739e268
 
aaf1179
b96c8c5
 
5d39f28
 
739e268
5d39f28
739e268
 
 
 
 
 
 
 
 
b1fdc27
ec25ef6
739e268
 
ec25ef6
 
739e268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75cc483
 
 
 
 
739e268
75cc483
 
 
5d39f28
7b077a3
 
5d39f28
96cb6bb
7b077a3
96cb6bb
5d39f28
2115a66
739e268
 
 
 
 
 
 
 
 
c643307
e18e8e2
c643307
 
 
cbbd444
c643307
 
 
 
 
 
ddd360b
e4a20eb
c643307
 
 
 
 
 
 
0a6e1c9
c643307
 
99b5399
cbbd444
c643307
 
 
 
586b631
7b077a3
 
80c0bfe
00e74d5
 
c643307
194a41e
80c0bfe
 
 
1ff2dfa
80c0bfe
 
c6a81f6
80c0bfe
f7b4ac7
e4a20eb
80c0bfe
 
ec25ef6
071e791
 
80c0bfe
 
a447492
80c0bfe
 
 
cec477c
586b631
 
 
 
cbbd444
 
80c0bfe
 
712647c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
import gradio as gr
import torch
from diffusers import DiffusionPipeline
from diffusers import AutoencoderKL
from config import *
from helpers import *

def device_change(device, config):
    
    config = set_config(config, 'device', device)
    
    return config, config, assemble_code(config)

def model_refiner_change(refiner, config):
    
    config = set_config(config, 'refiner', refiner)
    
    return config, config, assemble_code(config)

def cpu_offload_change(cpu_offload, config):
    
    config = set_config(config, 'cpu_offload', cpu_offload)
    
    return config, config, assemble_code(config)

def models_change(model, scheduler, config):

    config = set_config(config, 'model', model)

    use_safetensors = False
    trigger_token = ""
    
    # no model selected (because this is UI init run)
    if type(model) != list and str(model) != 'None' and str(model) != 'null':
        
        use_safetensors = str(models[model]['use_safetensors'])
        model_description = models[model]['description']
        trigger_token = models[model]['trigger_token'] 
        
        # if no scheduler is selected, choose the default one for this model
        if scheduler == None:
            
            scheduler = models[model]['scheduler']

    else:

        model_description = 'Please select a model.'
        
    config["use_safetensors"] = str(use_safetensors)
    config["scheduler"] = str(scheduler)
    
    # safety_checker_change(in_safety_checker.value, config)
    # requires_safety_checker_change(in_requires_safety_checker.value, config)

    return model_description, trigger_token, use_safetensors, scheduler, config, config, assemble_code(config)

def data_type_change(data_type, config):

    config = set_config(config, 'data_type', data_type)

    return config, config, assemble_code(config)

def tensorfloat32_change(allow_tensorfloat32, config):  
        
    config = set_config(config, 'allow_tensorfloat32', allow_tensorfloat32)

    return config, config, assemble_code(config)

def inference_steps_change(inference_steps, config):
    
    config = set_config(config, 'inference_steps', inference_steps)

    return config, config, assemble_code(config)

def manual_seed_change(manual_seed, config):
    
    config = set_config(config, 'manual_seed', manual_seed)

    return config, config, assemble_code(config)

def guidance_scale_change(guidance_scale, config):

    config = set_config(config, 'guidance_scale', guidance_scale)

    return config, config, assemble_code(config)

def lora_scale_change(lora_scale, config):

    config = set_config(config, 'lora_scale', lora_scale)

    return config, config, assemble_code(config)

def enable_vae_slicing_change(enable_vae_slicing, config):

    config = set_config(config, 'enable_vae_slicing', enable_vae_slicing)

    return config, config, assemble_code(config)

def enable_vae_tiling_change(enable_vae_tiling, config):

    config = set_config(config, 'enable_vae_tiling', enable_vae_tiling)

    return config, config, assemble_code(config)

def prompt_change(prompt, config):
    
    config = set_config(config, 'prompt', prompt)

    return config, config, assemble_code(config)

def trigger_token_change(trigger_token, config):
    
    config = set_config(config, 'trigger_token', trigger_token)

    return config, config, assemble_code(config)

def negative_prompt_change(negative_prompt, config):
    
    config = set_config(config, 'negative_prompt', negative_prompt)
    
    return config, config, assemble_code(config)

def variant_change(variant, config):
    
    config = set_config(config, 'variant', variant)

    return config, config, assemble_code(config)

def attention_slicing_change(attention_slicing, config):
    
    config = set_config(config, 'attention_slicing', attention_slicing)

    return config, config, assemble_code(config)

def pre_compile_unet_change(pre_compile_unet, config):
    
    config = set_config(config, 'pre_compile_unet', pre_compile_unet)

    return config, config, assemble_code(config)
    
def safety_checker_change(safety_checker, config):
        
    config = set_config(config, 'safety_checker', safety_checker)

    return config, config, assemble_code(config)

def requires_safety_checker_change(requires_safety_checker, config):

    config = set_config(config, 'requires_safety_checker', requires_safety_checker)

    return config, config, assemble_code(config)

def auto_encoders_change(auto_encoder, config):
    
    if str(auto_encoder) != 'None' and str(auto_encoder) != 'null' and type(auto_encoder) != list:
        
        auto_encoder_description = auto_encoders[auto_encoder]
        
    else:
        auto_encoder_description = ''

    config = set_config(config, 'auto_encoder', auto_encoder)

    return auto_encoder_description, config, config, assemble_code(config)

def schedulers_change(scheduler, config):
    
    if str(scheduler) != 'None' and str(scheduler) != 'null' and type(scheduler) != list:
        
        scheduler_description = schedulers[scheduler]
        
    else:
        scheduler_description = 'Please select a scheduler.'
        
    config = set_config(config, 'scheduler', scheduler)

    return scheduler_description, config, config, assemble_code(config)
    
def adapters_textual_inversion_change(adapter_textual_inversion, config):
    
    if str(adapter_textual_inversion) != 'None' and str(adapter_textual_inversion) != 'null' and type(adapter_textual_inversion) != list:
        
        adapter_textual_inversion_description = adapters['textual_inversion'][adapter_textual_inversion]['description']
        in_adapters_textual_inversion_token = adapters['textual_inversion'][adapter_textual_inversion]['token']
        
    else:
        adapter_textual_inversion_description = ""
        in_adapters_textual_inversion_token = ""
    
    config = set_config(config, 'adapter_textual_inversion', adapter_textual_inversion)
    
    return adapter_textual_inversion_description, in_adapters_textual_inversion_token, config, config, assemble_code(config)

def adapters_lora_change(adapter_loras, config):
    
    if len(adapter_loras) > 0:
        
        adapter_lora_description = '; '.join([adapters['lora'][adapter_lora]['description'] for adapter_lora in adapter_loras])
        adapter_lora_token = [adapters['lora'][adapter_lora]['token'] for adapter_lora in adapter_loras]
        adapter_lora_weight = [adapters['lora'][adapter_lora]['weight'] for adapter_lora in adapter_loras]
        adapter_lora_balancing = {}
        for adapter_lora in adapter_loras:
            if not adapter_lora in config['adapter_lora_balancing']:
                adapter_lora_balancing[adapter_lora] = 1
            else:
                adapter_lora_balancing[adapter_lora] = config['adapter_lora_balancing'][adapter_lora]

    else:
        adapter_lora_description = []
        adapter_lora_token = []
        adapter_lora_weight = []
        adapter_lora_balancing = {}
    
    config = set_config(config, 'adapter_lora', adapter_loras)
    config = set_config(config, 'adapter_lora_token', adapter_lora_token)
    config = set_config(config, 'adapter_lora_weight', adapter_lora_weight)
    config = set_config(config, 'adapter_lora_balancing', adapter_lora_balancing)
    
    return adapter_lora_description, adapter_lora_token, adapter_lora_weight, adapter_lora_balancing, config, config, assemble_code(config)

def adapters_lora_balancing_change(adapter_lora_balancing, config):

    config = set_config(config, 'adapter_lora_balancing', json.loads(adapter_lora_balancing.replace("'", '"').replace('None', 'null').replace('False', 'False')))

    return config, config, assemble_code(config)
    
def textual_inversion_token_change(adapter_textual_inversion_token, config):
    
    config = set_config(config, 'adapter_textual_inversion_token', adapter_textual_inversion_token)

    return config, config, assemble_code(config)

def re_run_inference(config, config_history, pipeline, progress=gr.Progress(track_tqdm=True)):
    
    if str(config["model"]) == 'None' and \
    str(config["model"]) == 'null' and \
    str(config["model"]) == '' and \
    str(config["scheduler"]) == 'None':
        return "Please select a model AND a scheduler.", "Please select a model AND a scheduler.", None, pipeline
    
    if pipeline == None:
        return "Please run full inference first.", "Please run full inference first.", None, pipeline

    # # MANUAL SEED/GENERATOR - we probably don't need that again?
    # if config["manual_seed"] is None or config["manual_seed"] == '' or int(config["manual_seed"]) < 0:
    #     generator = None
    # else:
    #     generator = torch.manual_seed(int(config["manual_seed"])) 
    
    if len(config["adapter_lora"]) > 0 and len(config["adapter_lora"]) == len(config["adapter_lora_weight"]):

        cross_attention_kwargs = {"scale": config["lora_scale"]}
                
    else:    
        cross_attention_kwargs = None

    # MANUAL SEED/GENERATOR
    if config["manual_seed"] is None or config["manual_seed"] == '' or int(config["manual_seed"]) < 0:
        generator = torch.Generator()
    else:
        generator = torch.Generator().manual_seed(int(config["manual_seed"])) 

    prompt = config["prompt"] + config["trigger_token"] + config["adapter_textual_inversion_token"] + ' '.join(config["adapter_lora_token"])
    
    image = pipeline(
        prompt = prompt,
        generator = generator,
        negative_prompt = config["negative_prompt"],
        num_inference_steps = int(config["inference_steps"]), 
        cross_attention_kwargs = cross_attention_kwargs,
        guidance_scale = float(config["guidance_scale"])).images

    if config['refiner'].lower() != 'none' and config['refiner'].lower() != 'null':
        image = refiner(
            prompt = prompt,
            num_inference_steps = int(config["inference_steps"]), 
            image=image,
        ).images
        
    config_history.append(config.copy())

    # expected output: out_image, out_config_history, config_history, pipeline
    return image[0], dict_list_to_markdown_table(config_history), config_history, pipeline
        
    
def run_inference(config, config_history, pipeline, progress=gr.Progress(track_tqdm=True)):
    
    if str(config["model"]) != 'None' and str(config["model"]) != 'null' and str(config["model"]) != '' and str(config["scheduler"]) != 'None':

        progress(1, desc="Initializing pipeline...")
        
        torch.cuda.empty_cache()
        
        torch.backends.cuda.matmul.allow_tf32 = get_bool(config["allow_tensorfloat32"]) # Use TensorFloat-32 as of https://huggingface.co/docs/diffusers/main/en/optimization/fp16 faster, but slightly less accurate computations
                
        # INIT PIPELINE
        pipeline = get_pipeline(config)
        
        progress(2, desc="Setting pipeline params...")

        if str(config["cpu_offload"]).lower() != 'false':
            pipeline.enable_model_cpu_offload()

        # ATTENTION SLICING
        if str(config["attention_slicing"]).lower() == 'true': pipeline.enable_attention_slicing()

        # PRE COMPILE UNET
        if str(config["pre_compile_unet"]).lower() == 'true': pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)

        # AUTO ENCODER
        if str(config["auto_encoder"]).lower() != 'none' and str(config["auto_encoder"]).lower() != 'null' and str(config["auto_encoder"]).lower() != '':
            pipeline.vae = AutoencoderKL.from_pretrained(config["auto_encoder"], torch_dtype=get_data_type(config["data_type"])).to(config["device"])

        if str(config["enable_vae_slicing"]).lower() != 'false': pipeline.enable_vae_slicing()
        if str(config["enable_vae_tiling"]).lower() != 'false': pipeline.enable_vae_tiling()
                
        # SAFETY CHECKER
        if str(config["safety_checker"]).lower() == 'false': pipeline.safety_checker = None 
        pipeline.requires_safety_checker = get_bool(config["requires_safety_checker"])
            
        # SCHEDULER/SOLVER
        pipeline.scheduler = get_scheduler(config["scheduler"], pipeline.scheduler.config)
        
        # INIT REFINER
        if str(config['refiner']).lower() != 'none' and str(config['refiner']).lower() != 'null':

            progress(3, desc="Initializing refiner...")
            refiner = DiffusionPipeline.from_pretrained(
                    config['refiner'],
                    text_encoder_2=pipeline.text_encoder_2,
                    vae=pipeline.vae,
                    torch_dtype=get_data_type(config["data_type"]),
                    use_safetensors=get_bool(config["use_safetensors"]), 
                    variant = get_variant(config["variant"])).to(config["device"])
            
            if str(config["cpu_offload"]).lower() != 'false':
                refiner.enable_model_cpu_offload()

            if str(config["enable_vae_slicing"]).lower() != 'false': refiner.enable_vae_slicing()
            if str(config["enable_vae_tiling"]).lower() != 'false': refiner.enable_vae_tiling()
            
            
        # ADAPTERS
        # TEXTUAL INVERSION
        if str(config["adapter_textual_inversion"]).lower() != 'none' and str(config["adapter_textual_inversion"]).lower() != 'null' and str(config["adapter_textual_inversion"]).lower() != '':
            progress(4, desc=f"Loading textual inversion adapter {config['adapter_textual_inversion']}...")
            pipeline.load_textual_inversion(config["adapter_textual_inversion"], token=config["adapter_textual_inversion_token"])
        
        # LoRA
        if len(config["adapter_lora"]) > 0 and len(config["adapter_lora"]) == len(config["adapter_lora_weight"]):
            adapter_lora_balancing = []
            for adapter_lora_index, adapter_lora in enumerate(config["adapter_lora"]):
                progress(5, desc=f"Loading LoRA adapters {config['adapter_lora']}...")
                if str(config["adapter_lora_weight"][adapter_lora_index]).lower() != 'none':
                    pipeline.load_lora_weights(adapter_lora, weight_name=config["adapter_lora_weight"][adapter_lora_index], adapter_name=config["adapter_lora_token"][adapter_lora_index])
                else:
                    pipeline.load_lora_weights(adapter_lora, adapter_name=config["adapter_lora_token"][adapter_lora_index])
                adapter_lora_balancing.append(config["adapter_lora_balancing"][adapter_lora])
        
            adapter_weights = adapter_lora_balancing
            pipeline.set_adapters(config["adapter_lora_token"], adapter_weights=adapter_weights)

            cross_attention_kwargs = {"scale": float(config["lora_scale"])}
                
        else:    
            cross_attention_kwargs = None

        progress(6, desc="Inferencing...")

        # MANUAL SEED/GENERATOR
        if config["manual_seed"] is None or config["manual_seed"] == '' or int(config["manual_seed"]) < 0:
            generator = torch.Generator()
        else:
            generator = torch.Generator().manual_seed(int(config["manual_seed"])) 
        
        prompt = config["prompt"] + config["trigger_token"] + config["adapter_textual_inversion_token"] + ' '.join(config["adapter_lora_token"])
        
        image = pipeline(
            prompt = prompt,
            negative_prompt = config["negative_prompt"],
            generator = generator,
            num_inference_steps = int(config["inference_steps"]),
            cross_attention_kwargs = cross_attention_kwargs,
            guidance_scale = float(config["guidance_scale"])).images

        if config['refiner'].lower() != 'none' and config['refiner'].lower() != 'null':
            image = refiner(
                prompt = prompt,
                num_inference_steps = int(config["inference_steps"]), 
                image=image,
            ).images
            
        config_history.append(config.copy())

    # expected output: out_image, out_config_history, config_history, pipeline
        return image[0], dict_list_to_markdown_table(config_history), config_history, pipeline
    
    else:
    
        return "Please select a model AND a scheduler.", "Please select a model AND a scheduler.", None, pipeline

appConfig = load_app_config()
models = appConfig.get("models", {})
schedulers = appConfig.get("schedulers", {})
devices =  appConfig.get("devices", [])
refiners = appConfig.get("refiners", [])
auto_encoders = appConfig.get("auto_encoders", [])
adapters = appConfig.get("adapters", [])

js = '''function js(){
        window.set_cookie = function(key, value, config){
            document.cookie = key+'='+value+'; Path=/; SameSite=Strict';
            return [value, config]
        }
        window.set_model_cookie = function(model, config){
            document.cookie = 'model='+ model+'; Path=/; SameSite=Strict';
            // some things I just don't understand, this is one of them
            return [model, null, null, null, model, config, null]
        }
        window.set_adapter_textual_inversion_cookie = function(adapter_textual_inversion, config){
            document.cookie = 'adapter_textual_inversion='+ adapter_textual_inversion+'; Path=/; SameSite=Strict';
            // some things I just don't understand, this is one of them
            return [adapter_textual_inversion, null, adapter_textual_inversion, config, null]
        }
        window.set_adapter_lora_cookie = function(adapter_lora, config){
            document.cookie = 'adapter_lora='+ JSON.stringify(adapter_lora)+'; Path=/; SameSite=Strict';
            // some things I just don't understand, this is one of them
            return [adapter_lora, null, null, null, adapter_lora, config, null]
        }
        window.set_cookie_2 = function(key, value, config){
            document.cookie = key+'='+value+'; Path=/; SameSite=Strict';
            // some things I just don't understand, this is one of them
            return [value, null, config, null]
        }
    }
    '''

# interface
with gr.Blocks(analytics_enabled=False) as demo:
    
    config = gr.State(value=get_initial_config())
    config_history = gr.State(value=[])
    pipeline = gr.State()

    gr.Markdown('''## Text-2-Image Playground
                <small>by <a target="_blank" href="https://nickyreinert.de/">Nicky Reinert</a> | 
                home base: https://huggingface.co/spaces/n42/pictero
                </small>''')
    gr.Markdown("### Device")
    gr.Markdown("(you may add a custom device address at any time)")
    with gr.Row():
        in_devices = gr.Dropdown(label="Device:", value=config.value["device"], choices=devices, filterable=True, multiselect=False, allow_custom_value=True, info="")
        gr.Column("")
        gr.Column("")
    with gr.Accordion("Device specific settings", open=False):
        with gr.Row():
            in_cpu_offload = gr.Radio(label="CPU Offload:", value=config.value["cpu_offload"], choices=["True", "False"], info="This may increase performance, as it offloads computations from the GPU to the CPU. But this can also lead to slower executions and lower effectiveness. Compare running time and outputs before making sure, that this setting will help you, is not supported on MPS")
            in_data_type = gr.Radio(label="Data Type:", value=config.value["data_type"], choices=["bfloat16", "float16", "float32"], info="`bfloat16` is not supported on MPS devices right now; `float16` may also not be supported on all devices, Half-precision weights, will save GPU memory, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16")
            in_allow_tensorfloat32 = gr.Radio(label="Allow TensorFloat32:", value=config.value["allow_tensorfloat32"], choices=["True", "False"], info="is not supported on MPS devices right now; use TensorFloat-32 is faster, but results in slightly less accurate computations, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16 ")
        with gr.Row():
            in_variant = gr.Radio(label="Variant:", value=config.value["variant"], choices=["fp16", None], info="Use half-precision weights will save GPU memory, not all models support that, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16 ")
            in_attention_slicing = gr.Radio(label="Attention slicing:", value=config.value["attention_slicing"], choices=["True", "False"], info="Attention operation will be cutted into multiple steps, see https://huggingface.co/docs/diffusers/optimization/mps")
            in_pre_compile_unet = gr.Radio(label="Pre-Compile UNet:", value=config.value["pre_compile_unet"], choices=["True", "False"], info="Can speed up the inference process, compilation takes some time, so you should only apply this option when you finalize your inference, does not work on MPS, see https://huggingface.co/docs/diffusers/optimization/torch2.0 ")
            gr.Column("")

    gr.Markdown("### Model")
    with gr.Row():
        with gr.Column(scale=1):
            in_models = gr.Dropdown(choices=list(models.keys()), label="Model")
        with gr.Column(scale=2):
            out_model_description = gr.Textbox(value="", label="Description")
    with gr.Accordion("Model specific settings", open=False):
        with gr.Row():
            in_trigger_token = gr.Textbox(value=config.value["trigger_token"], label="Trigger Token", info="will be added to your prompt to `activate` a fine tuned model")
            in_model_refiner = gr.Dropdown(value=config.value["refiner"], choices=['none'] + refiners, label="Refiner", allow_custom_value=True, multiselect=False)
            gr.Column("")
        with gr.Row():
            in_use_safetensors = gr.Radio(label="Use safe tensors:", choices=["True", "False"], interactive=False)
            in_safety_checker = gr.Radio(label="Enable safety checker:", value=config.value["safety_checker"], choices=["True", "False"])
            in_requires_safety_checker = gr.Radio(label="Requires safety checker:", value=config.value["requires_safety_checker"], choices=["True", "False"])

    gr.Markdown("### Scheduler")
    gr.Markdown("Schedulers employ various strategies for noise control, the scheduler controls parameter adaption between each inference step, depending on the right scheduler for your model, it may only take 10 or 20 steps to achieve very good results, see https://huggingface.co/docs/diffusers/using-diffusers/loading#schedulers")
    with gr.Row():
        with gr.Column(scale=1):
            in_schedulers = gr.Dropdown(value="", choices=list(schedulers.keys()), allow_custom_value=True, label="Scheduler/Solver", info="")
        with gr.Column(scale=2):
            out_scheduler_description = gr.Textbox(value="", label="Description")
    
    with gr.Accordion("Auto Encoder", open=False):
        with gr.Row():
            gr.Markdown("**VAE** stands for Variational Auto Encoders. An 'autoencoder' is an artificial neural network that is able to encode input data and decode to output data to bascially recreate the input. The VAE whereas adds a couple of additional layers of complexity to create new and unique output.")
        with gr.Row():
            in_auto_encoders = gr.Dropdown(value="None", choices=list(auto_encoders.keys()), label="Auto encoder", info="leave empty to not add an auto encoder")
            out_auto_encoder_description = gr.Textbox(value="", label="Description")
            gr.Column("")
        with gr.Row():
            in_enable_vae_slicing = gr.Radio(label="Enable VAE slicing:", value=config.value["enable_vae_slicing"], choices=["True", "False"], info="decoding the batches of latents one image at a time, which may reduce memory usage, see https://huggingface.co/docs/diffusers/main/en/optimization/memory")
            in_enable_vae_tiling= gr.Radio(label="Enable VAE tiling:", value=config.value["enable_vae_tiling"], choices=["True", "False"], info="splitting the image into overlapping tiles, decoding the tiles, and then blending the outputs together to compose the final image, see https://huggingface.co/docs/diffusers/main/en/optimization/memory")
            gr.Column("")
            
    with gr.Accordion("Adapters", open=False):
        with gr.Row():
            gr.Markdown('''Adapters allow you to apply finetuned weights to your base model. They come in many flavors depending on how they were trained. See see https://huggingface.co/docs/diffusers/using-diffusers/loading_adapters''')
        with gr.Row():
            gr.Markdown('#### Textual Inversion Adapters')
        with gr.Row():
            gr.Markdown('(a technique that enables a model like Stable Diffusion to learn a new concept from just a few sample images)')
        with gr.Row():
            in_adapters_textual_inversion = gr.Dropdown(value="", choices=list(adapters['textual_inversion'].keys()), label="Textual Inversion Adapter", info="leave empty to not use an adapter")
            in_adapters_textual_inversion_token = gr.Textbox(value="", label="Token", info="required to activate the token, will be added to your prompt")
            out_adapters_textual_inversion_description = gr.Textbox(value="", label="Description")
        with gr.Row():
            gr.Markdown('#### LoRA')
        with gr.Row():
            gr.Markdown('(Low-Rank-Adaption is a performant fine tuning technique)')
        with gr.Row():
            in_adapters_lora = gr.Dropdown(value="None", choices=list(adapters['lora'].keys()), multiselect=True, label="LoRA Adapter", info="leave empty to not use an adapter")
            out_adapters_lora_description = gr.Textbox(value="", label="Description")
            in_lora_scale = gr.Slider(minimum=0, maximum=1, step=0.1, label="LoRA Scale", value=config.value["lora_scale"], info="How should the LoRA model influence the result, from 0 (no influence) to 1 (full influencer)")
        with gr.Row():
            in_adapters_lora_token = gr.Textbox(value="None", label="Token(s)", info="required to activate the token, will be added to your prompt")
            in_adapters_lora_weight = gr.Textbox(value="", label="Weight(s)/Checkpoint(s)")
            in_adapters_lora_balancing = gr.Textbox(value={}, label="Balancing", info="provide a list of balancing weights in the order of your LoRA adapter (according to `token`s)")
            
    gr.Markdown("### Inference settings")
    with gr.Row():
        in_prompt = gr.TextArea(label="Prompt", value=config.value["prompt"])
        in_negative_prompt = gr.TextArea(label="Negative prompt", value=config.value["negative_prompt"])
    with gr.Row():
        in_guidance_scale = gr.Slider(minimum=0, maximum=100, step=0.1, label="Guidance Scale", value=config.value["guidance_scale"], info="A low guidance scale leads to a faster inference time, with the drawback that negative prompts don’t have any effect on the denoising process.")
        in_inference_steps = gr.Number(label="Inference steps", value=config.value["inference_steps"], info="Each step improves the final result but also results in higher computation")
        in_manual_seed = gr.Number(label="Manual seed", value=config.value["manual_seed"], info="Set this to -1 or leave it empty to randomly generate an image. A fixed value will result in a similar image for every run")
    
    gr.Markdown("### Output")
    with gr.Row():
        gr.Markdown('Hit "Re-Run" to restart the pipeline with your changes to the inference settings only')
    with gr.Row():
        btn_start_pipeline = gr.Button(value="Run", variant="primary")
        btn_re_start_pipeline = gr.Button(value="Re-Run")
        btn_stop_pipeline = gr.Button(value="Stop", variant="stop")
    with gr.Row():
        out_image = gr.Image()

    with gr.Accordion("Code and Configuration", open=False):
        with gr.Row():
            out_code = gr.Code(assemble_code(config.value), label="Code")
            # out_config = gr.Code(value=str(config.value), label="Current config")
            out_config = gr.JSON(value=config.value, label="Current config")
        with gr.Row():
            out_config_history = gr.Markdown(dict_list_to_markdown_table(config_history.value))

    # `SPECIAL` CHANGE LISTENERS
    in_models.change(models_change, inputs=[in_models, in_schedulers, config], outputs=[out_model_description, in_trigger_token, in_use_safetensors, in_schedulers, config, out_config, out_code], js="(model, config) => set_model_cookie(model, config)")
    in_schedulers.change(schedulers_change, inputs=[in_schedulers, config], outputs=[out_scheduler_description, config, out_config, out_code], js="(value, config) => set_cookie_2('scheduler', value, config)")
    in_auto_encoders.change(auto_encoders_change, inputs=[in_auto_encoders, config], outputs=[out_auto_encoder_description, config, out_config, out_code], js="(value, config) => set_cookie_2('auto_encoder', value, config)")
    in_adapters_textual_inversion.change(adapters_textual_inversion_change, inputs=[in_adapters_textual_inversion, config], outputs=[out_adapters_textual_inversion_description, in_adapters_textual_inversion_token, config, out_config, out_code], js="(adapter_textual_inversion, config) => set_adapter_textual_inversion_cookie(adapter_textual_inversion, config)")
    in_adapters_lora.change(adapters_lora_change, inputs=[in_adapters_lora, config], outputs=[out_adapters_lora_description, in_adapters_lora_token, in_adapters_lora_weight, in_adapters_lora_balancing, config, out_config, out_code], js="(adapter_lora, config) => set_adapter_lora_cookie(adapter_lora, config)")
    
    # `GENERIC` CHANGE LISTENERS, SAME INPUT, SAME OUTPUT STRUCTURE
    in_devices.change(fn=device_change, inputs=[in_devices, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('device', value, config)")
    in_data_type.change(data_type_change, inputs=[in_data_type, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('data_type', value, config)")
    in_allow_tensorfloat32.change(tensorfloat32_change, inputs=[in_allow_tensorfloat32, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('allow_tensorfloat32', value, config)")
    in_variant.change(variant_change, inputs=[in_variant, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('variant', value, config)")
    in_attention_slicing.change(attention_slicing_change, inputs=[in_attention_slicing, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('attention_slicing', value, config)")
    in_pre_compile_unet.change(pre_compile_unet_change, inputs=[in_pre_compile_unet, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('pre_compile_unet', value, config)")
    in_model_refiner.change(model_refiner_change, inputs=[in_model_refiner, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('model_refiner', value, config)")
    in_cpu_offload.change(cpu_offload_change, inputs=[in_cpu_offload, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('cpu_offload', value, config)")
    in_safety_checker.change(safety_checker_change, inputs=[in_safety_checker, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('safety_checker', value, config)")
    in_requires_safety_checker.change(requires_safety_checker_change, inputs=[in_requires_safety_checker, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('requires_safety_checker', value, config)")
    in_inference_steps.change(inference_steps_change, inputs=[in_inference_steps, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('inference_steps', value, config)")
    in_manual_seed.change(manual_seed_change, inputs=[in_manual_seed, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('manual_seed', value, config)")
    in_guidance_scale.change(guidance_scale_change, inputs=[in_guidance_scale, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('guidance_scale', value, config)")
    in_lora_scale.change(lora_scale_change, inputs=[in_lora_scale, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('lora_scale', value, config)")
    in_enable_vae_slicing.change(enable_vae_slicing_change, inputs=[in_enable_vae_slicing, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('enable_vae_slicing', value, config)")
    in_enable_vae_tiling.change(enable_vae_tiling_change, inputs=[in_enable_vae_tiling, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('enable_vae_tiling', value, config)")
    in_adapters_textual_inversion_token.change(textual_inversion_token_change, inputs=[in_adapters_textual_inversion_token, config], outputs=[config, out_config, out_code])
    in_adapters_lora_balancing.change(adapters_lora_balancing_change, inputs=[in_adapters_lora_balancing, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('adapter_lora_balancing', value, config)")
    in_prompt.change(prompt_change, inputs=[in_prompt, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('prompt', value, config)")
    in_trigger_token.change(trigger_token_change, inputs=[in_trigger_token, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('trigger_token', value, config)")
    in_negative_prompt.change(negative_prompt_change, inputs=[in_negative_prompt, config], outputs=[config, out_config, out_code], js="(value, config) => set_cookie('negative_prompt', value, config)")
    
    ev_run_inference = btn_start_pipeline.click(run_inference, inputs=[config, config_history, pipeline], outputs=[out_image, out_config_history, config_history, pipeline])
    ev_re_run_inference = btn_re_start_pipeline.click(re_run_inference, inputs=[config, config_history, pipeline], outputs=[out_image, out_config_history, config_history, pipeline])
    btn_stop_pipeline.click(fn=None, inputs=None, outputs=None, cancels=[ev_run_inference, ev_re_run_inference])

    # send current respect initial config to init_config to populate parameters to all relevant input fields
    # if GET parameter is set, it will overwrite initial config parameters
    demo.load(fn=get_config_from_url, js=js,
        inputs=[config], 
        outputs=[
            in_models,
            in_devices,
            in_cpu_offload,
            in_use_safetensors,
            in_data_type,
            in_model_refiner,
            in_variant,
            in_attention_slicing,
            in_pre_compile_unet,
            in_safety_checker,
            in_requires_safety_checker,
            in_auto_encoders,
            in_enable_vae_slicing,
            in_enable_vae_tiling,
            in_schedulers,
            in_prompt,
            in_trigger_token,
            in_negative_prompt,
            in_inference_steps,
            in_manual_seed,
            in_guidance_scale,
            in_adapters_textual_inversion,
            in_adapters_textual_inversion_token,
            in_adapters_lora,
            in_adapters_lora_token,
            in_adapters_lora_weight,
            in_adapters_lora_balancing,
            ])

demo.launch(show_error=True)