n42 commited on
Commit
75cc483
·
1 Parent(s): 4f7e95f

fixing int-str error

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -236,7 +236,7 @@ def run_inference(config, config_history, progress=gr.Progress(track_tqdm=True))
236
  pipeline.scheduler = get_scheduler(config["scheduler"], pipeline.scheduler.config)
237
 
238
  # MANUAL SEED/GENERATOR
239
- if config["manual_seed"] < 0 or config["manual_seed"] is None or config["manual_seed"] == '':
240
  generator = None
241
  else:
242
  generator = torch.manual_seed(int(config["manual_seed"]))
@@ -342,15 +342,6 @@ with gr.Blocks(analytics_enabled=False) as demo:
342
  # with gr.Row():
343
  # gr.Markdown('Choose an adapter.')
344
 
345
- gr.Markdown("### Inference settings")
346
- with gr.Row():
347
- in_prompt = gr.TextArea(label="Prompt", value=config.value["prompt"])
348
- in_negative_prompt = gr.TextArea(label="Negative prompt", value=config.value["negative_prompt"])
349
- with gr.Row():
350
- in_inference_steps = gr.Number(label="Inference steps", value=config.value["inference_steps"], info="Each step improves the final result but also results in higher computation")
351
- in_manual_seed = gr.Number(label="Manual seed", value=config.value["manual_seed"], info="Set this to -1 or leave it empty to randomly generate an image. A fixed value will result in a similar image for every run")
352
- in_guidance_scale = gr.Slider(minimum=0, maximum=100, step=0.1, label="Guidance Scale", value=config.value["guidance_scale"], info="A low guidance scale leads to a faster inference time, with the drawback that negative prompts don’t have any effect on the denoising process.")
353
-
354
  gr.Markdown("### Auto Encoder")
355
  with gr.Row():
356
  gr.Markdown("**VAE** stands for Variational Auto Encoders. An 'autoencoder' is an artificial neural network that is able to encode input data and decode to output data to bascially recreate the input. The VAE whereas adds a couple of additional layers of complexity to create new and unique output.")
@@ -374,6 +365,15 @@ with gr.Blocks(analytics_enabled=False) as demo:
374
  in_adapters_textual_inversion_token = gr.Textbox(value="None", label="Token", info="required to activate the token, will be added to your prompt")
375
  out_adapters_textual_inversion_description = gr.Textbox(value="", label="Description")
376
 
 
 
 
 
 
 
 
 
 
377
  gr.Markdown("### Output")
378
  with gr.Row():
379
  btn_start_pipeline = gr.Button(value="Run", variant="primary")
 
236
  pipeline.scheduler = get_scheduler(config["scheduler"], pipeline.scheduler.config)
237
 
238
  # MANUAL SEED/GENERATOR
239
+ if config["manual_seed"] is None or config["manual_seed"] == '' or int(config["manual_seed"]) < 0:
240
  generator = None
241
  else:
242
  generator = torch.manual_seed(int(config["manual_seed"]))
 
342
  # with gr.Row():
343
  # gr.Markdown('Choose an adapter.')
344
 
 
 
 
 
 
 
 
 
 
345
  gr.Markdown("### Auto Encoder")
346
  with gr.Row():
347
  gr.Markdown("**VAE** stands for Variational Auto Encoders. An 'autoencoder' is an artificial neural network that is able to encode input data and decode to output data to bascially recreate the input. The VAE whereas adds a couple of additional layers of complexity to create new and unique output.")
 
365
  in_adapters_textual_inversion_token = gr.Textbox(value="None", label="Token", info="required to activate the token, will be added to your prompt")
366
  out_adapters_textual_inversion_description = gr.Textbox(value="", label="Description")
367
 
368
+ gr.Markdown("### Inference settings")
369
+ with gr.Row():
370
+ in_prompt = gr.TextArea(label="Prompt", value=config.value["prompt"])
371
+ in_negative_prompt = gr.TextArea(label="Negative prompt", value=config.value["negative_prompt"])
372
+ with gr.Row():
373
+ in_inference_steps = gr.Number(label="Inference steps", value=config.value["inference_steps"], info="Each step improves the final result but also results in higher computation")
374
+ in_manual_seed = gr.Number(label="Manual seed", value=config.value["manual_seed"], info="Set this to -1 or leave it empty to randomly generate an image. A fixed value will result in a similar image for every run")
375
+ in_guidance_scale = gr.Slider(minimum=0, maximum=100, step=0.1, label="Guidance Scale", value=config.value["guidance_scale"], info="A low guidance scale leads to a faster inference time, with the drawback that negative prompts don’t have any effect on the denoising process.")
376
+
377
  gr.Markdown("### Output")
378
  with gr.Row():
379
  btn_start_pipeline = gr.Button(value="Run", variant="primary")