fixing wrong history address
Browse files
app.py
CHANGED
@@ -104,24 +104,24 @@ def get_tensorfloat32(allow_tensorfloat32):
|
|
104 |
|
105 |
return True if str(allow_tensorfloat32).lower() == 'true' else False
|
106 |
|
107 |
-
def get_scheduler(scheduler,
|
108 |
|
109 |
if scheduler == "DDPMScheduler":
|
110 |
-
return DDPMScheduler.from_config(
|
111 |
elif scheduler == "DDIMScheduler":
|
112 |
-
return DDIMScheduler.from_config(
|
113 |
elif scheduler == "PNDMScheduler":
|
114 |
-
return PNDMScheduler.from_config(
|
115 |
elif scheduler == "LMSDiscreteScheduler":
|
116 |
-
return LMSDiscreteScheduler.from_config(
|
117 |
elif scheduler == "EulerAncestralDiscreteScheduler":
|
118 |
-
return EulerAncestralDiscreteScheduler.from_config(
|
119 |
elif scheduler == "EulerDiscreteScheduler":
|
120 |
-
return EulerDiscreteScheduler.from_config(
|
121 |
elif scheduler == "DPMSolverMultistepScheduler":
|
122 |
-
return DPMSolverMultistepScheduler.from_config(
|
123 |
else:
|
124 |
-
return DPMSolverMultistepScheduler.from_config(
|
125 |
|
126 |
# get
|
127 |
# - initial configuration,
|
@@ -129,41 +129,9 @@ def get_scheduler(scheduler, config):
|
|
129 |
# - a list of available models from the config file
|
130 |
# - a list of available schedulers from the config file
|
131 |
# - a dict that contains code to for reproduction
|
132 |
-
config.set_inital_config()
|
133 |
-
# config.current, devices, model_configs, scheduler_configs, code = config.get_inital_config()
|
134 |
-
|
135 |
-
# device = config.current["device"]
|
136 |
-
# model = config.current["model"]
|
137 |
-
# scheduler = config.current["scheduler"]
|
138 |
-
# variant = config.current["variant"]
|
139 |
-
# allow_tensorfloat32 = config.current["allow_tensorfloat32"]
|
140 |
-
# use_safetensors = config.current["use_safetensors"]
|
141 |
-
# data_type = config.current["data_type"]
|
142 |
-
# safety_checker = config.current["safety_checker"]
|
143 |
-
# requires_safety_checker = config.current["requires_safety_checker"]
|
144 |
-
# manual_seed = config.current["manual_seed"]
|
145 |
-
# inference_steps = config.current["inference_steps"]
|
146 |
-
# guidance_scale = config.current["guidance_scale"]
|
147 |
-
# prompt = config.current["prompt"]
|
148 |
-
# negative_prompt = config.current["negative_prompt"]
|
149 |
-
|
150 |
-
config_history = []
|
151 |
|
152 |
# pipeline
|
153 |
-
def run_inference(
|
154 |
-
device,
|
155 |
-
use_safetensors,
|
156 |
-
data_type,
|
157 |
-
variant,
|
158 |
-
safety_checker,
|
159 |
-
requires_safety_checker,
|
160 |
-
scheduler,
|
161 |
-
prompt,
|
162 |
-
negative_prompt,
|
163 |
-
inference_steps,
|
164 |
-
manual_seed,
|
165 |
-
guidance_scale,
|
166 |
-
progress=gr.Progress(track_tqdm=True)):
|
167 |
|
168 |
if config.current["model"] != None and config.current["scheduler"] != None:
|
169 |
|
@@ -175,35 +143,34 @@ def run_inference(model,
|
|
175 |
|
176 |
pipeline = DiffusionPipeline.from_pretrained(
|
177 |
config.current["model"],
|
178 |
-
use_safetensors=config.current["use_safetensors"],
|
179 |
-
torch_dtype=get_data_type(config.current["data_type"]),
|
180 |
-
variant=variant).to(config.current["device"])
|
181 |
|
182 |
if config.current["safety_checker"] is None or str(config.current["safety_checker"]).lower == 'false':
|
183 |
pipeline.safety_checker = None
|
184 |
|
185 |
pipeline.requires_safety_checker = config.current["requires_safety_checker"]
|
186 |
|
187 |
-
pipeline.scheduler = get_scheduler(scheduler, pipeline.scheduler.config)
|
188 |
|
189 |
-
manual_seed
|
190 |
-
|
191 |
-
generator = torch.Generator(device)
|
192 |
else:
|
193 |
generator = torch.manual_seed(42)
|
194 |
|
195 |
progress((3,3), desc="Creating the result...")
|
196 |
|
197 |
image = pipeline(
|
198 |
-
prompt=prompt,
|
199 |
-
negative_prompt=negative_prompt,
|
200 |
-
generator=generator,
|
201 |
-
num_inference_steps=
|
202 |
-
guidance_scale=
|
203 |
|
204 |
-
|
205 |
|
206 |
-
return image, dict_list_to_markdown_table(
|
207 |
|
208 |
else:
|
209 |
|
@@ -297,24 +264,10 @@ with gr.Blocks() as demo:
|
|
297 |
in_guidance_scale.change(guidance_scale_change, inputs=[in_guidance_scale], outputs=[out_current_config, out_code])
|
298 |
in_prompt.change(prompt_change, inputs=[in_prompt], outputs=[out_current_config, out_code])
|
299 |
in_negative_prompt.change(negative_prompt_change, inputs=[in_negative_prompt], outputs=[out_current_config, out_code])
|
300 |
-
btn_start_pipeline.click(run_inference, inputs=[
|
301 |
-
in_models,
|
302 |
-
in_devices,
|
303 |
-
in_use_safetensors,
|
304 |
-
in_data_type,
|
305 |
-
in_variant,
|
306 |
-
in_safety_checker,
|
307 |
-
in_requires_safety_checker,
|
308 |
-
in_schedulers,
|
309 |
-
in_prompt,
|
310 |
-
in_negative_prompt,
|
311 |
-
in_inference_steps,
|
312 |
-
in_manual_seed,
|
313 |
-
in_guidance_scale
|
314 |
-
], outputs=[
|
315 |
-
out_image,
|
316 |
-
out_config_history])
|
317 |
|
|
|
|
|
318 |
demo.load(fn=init_config, inputs=out_current_config,
|
319 |
outputs=[
|
320 |
in_models,
|
|
|
104 |
|
105 |
return True if str(allow_tensorfloat32).lower() == 'true' else False
|
106 |
|
107 |
+
def get_scheduler(scheduler, pipeline_config):
|
108 |
|
109 |
if scheduler == "DDPMScheduler":
|
110 |
+
return DDPMScheduler.from_config(pipeline_config)
|
111 |
elif scheduler == "DDIMScheduler":
|
112 |
+
return DDIMScheduler.from_config(pipeline_config)
|
113 |
elif scheduler == "PNDMScheduler":
|
114 |
+
return PNDMScheduler.from_config(pipeline_config)
|
115 |
elif scheduler == "LMSDiscreteScheduler":
|
116 |
+
return LMSDiscreteScheduler.from_config(pipeline_config)
|
117 |
elif scheduler == "EulerAncestralDiscreteScheduler":
|
118 |
+
return EulerAncestralDiscreteScheduler.from_config(pipeline_config)
|
119 |
elif scheduler == "EulerDiscreteScheduler":
|
120 |
+
return EulerDiscreteScheduler.from_config(pipeline_config)
|
121 |
elif scheduler == "DPMSolverMultistepScheduler":
|
122 |
+
return DPMSolverMultistepScheduler.from_config(pipeline_config)
|
123 |
else:
|
124 |
+
return DPMSolverMultistepScheduler.from_config(pipeline_config)
|
125 |
|
126 |
# get
|
127 |
# - initial configuration,
|
|
|
129 |
# - a list of available models from the config file
|
130 |
# - a list of available schedulers from the config file
|
131 |
# - a dict that contains code to for reproduction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
# pipeline
|
134 |
+
def run_inference(progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
if config.current["model"] != None and config.current["scheduler"] != None:
|
137 |
|
|
|
143 |
|
144 |
pipeline = DiffusionPipeline.from_pretrained(
|
145 |
config.current["model"],
|
146 |
+
use_safetensors = config.current["use_safetensors"],
|
147 |
+
torch_dtype = get_data_type(config.current["data_type"]),
|
148 |
+
variant = config.current["variant"]).to(config.current["device"])
|
149 |
|
150 |
if config.current["safety_checker"] is None or str(config.current["safety_checker"]).lower == 'false':
|
151 |
pipeline.safety_checker = None
|
152 |
|
153 |
pipeline.requires_safety_checker = config.current["requires_safety_checker"]
|
154 |
|
155 |
+
pipeline.scheduler = get_scheduler(config.current["scheduler"], pipeline.scheduler.config)
|
156 |
|
157 |
+
if config.current["manual_seed"] < 0 or config.current["manual_seed"] is None or config.current["manual_seed"] == '':
|
158 |
+
generator = torch.Generator(config.current["device"])
|
|
|
159 |
else:
|
160 |
generator = torch.manual_seed(42)
|
161 |
|
162 |
progress((3,3), desc="Creating the result...")
|
163 |
|
164 |
image = pipeline(
|
165 |
+
prompt = config.current["prompt"],
|
166 |
+
negative_prompt = config.current["negative_prompt"],
|
167 |
+
generator = generator,
|
168 |
+
num_inference_steps = config.current["inference_steps"],
|
169 |
+
guidance_scale = config.current["guidance_scale"]).images[0]
|
170 |
|
171 |
+
config.history.append(config.current.copy())
|
172 |
|
173 |
+
return image, dict_list_to_markdown_table(config.history)
|
174 |
|
175 |
else:
|
176 |
|
|
|
264 |
in_guidance_scale.change(guidance_scale_change, inputs=[in_guidance_scale], outputs=[out_current_config, out_code])
|
265 |
in_prompt.change(prompt_change, inputs=[in_prompt], outputs=[out_current_config, out_code])
|
266 |
in_negative_prompt.change(negative_prompt_change, inputs=[in_negative_prompt], outputs=[out_current_config, out_code])
|
267 |
+
btn_start_pipeline.click(run_inference, inputs=[], outputs=[out_image, out_config_history])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
+
# send current respect initial config to init_config to populate parameters to all relevant input fields
|
270 |
+
# if GET parameter is set, it will overwrite initial config parameters
|
271 |
demo.load(fn=init_config, inputs=out_current_config,
|
272 |
outputs=[
|
273 |
in_models,
|
config.py
CHANGED
@@ -49,21 +49,6 @@ class Config:
|
|
49 |
self.history = []
|
50 |
self.devices = []
|
51 |
|
52 |
-
def load_app_config(self):
|
53 |
-
try:
|
54 |
-
with open('appConfig.json', 'r') as f:
|
55 |
-
appConfig = json.load(f)
|
56 |
-
except FileNotFoundError:
|
57 |
-
print("App config file not found.")
|
58 |
-
except json.JSONDecodeError:
|
59 |
-
print("Error decoding JSON in app config file.")
|
60 |
-
except Exception as e:
|
61 |
-
print("An error occurred while loading app config:", str(e))
|
62 |
-
|
63 |
-
return appConfig
|
64 |
-
|
65 |
-
def set_inital_config(self):
|
66 |
-
|
67 |
appConfig = self.load_app_config()
|
68 |
|
69 |
self.model_configs = appConfig.get("models", {})
|
@@ -102,6 +87,19 @@ class Config:
|
|
102 |
|
103 |
self.assemble_code()
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
def set_config(self, key, value):
|
106 |
|
107 |
self.current[key] = value
|
|
|
49 |
self.history = []
|
50 |
self.devices = []
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
appConfig = self.load_app_config()
|
53 |
|
54 |
self.model_configs = appConfig.get("models", {})
|
|
|
87 |
|
88 |
self.assemble_code()
|
89 |
|
90 |
+
def load_app_config(self):
|
91 |
+
try:
|
92 |
+
with open('appConfig.json', 'r') as f:
|
93 |
+
appConfig = json.load(f)
|
94 |
+
except FileNotFoundError:
|
95 |
+
print("App config file not found.")
|
96 |
+
except json.JSONDecodeError:
|
97 |
+
print("Error decoding JSON in app config file.")
|
98 |
+
except Exception as e:
|
99 |
+
print("An error occurred while loading app config:", str(e))
|
100 |
+
|
101 |
+
return appConfig
|
102 |
+
|
103 |
def set_config(self, key, value):
|
104 |
|
105 |
self.current[key] = value
|