nickyreinert-vml
commited on
Commit
·
29cefb0
1
Parent(s):
f7b4ac7
bug fix: when AutoEncoder is not set, process stops
Browse files- app.py +2 -3
- appConfig.json +0 -1
- config.py +1 -1
app.py
CHANGED
@@ -274,7 +274,6 @@ def run_inference(config, config_history, pipeline, progress=gr.Progress(track_t
|
|
274 |
|
275 |
if str(config["model"]) != 'None' and str(config["model"]) != 'null' and str(config["model"]) != '' and str(config["scheduler"]) != 'None':
|
276 |
|
277 |
-
print(config["model"])
|
278 |
progress(1, desc="Initializing pipeline...")
|
279 |
|
280 |
torch.cuda.empty_cache()
|
@@ -297,7 +296,7 @@ def run_inference(config, config_history, pipeline, progress=gr.Progress(track_t
|
|
297 |
if str(config["attention_slicing"]).lower() == 'true': pipeline.enable_attention_slicing()
|
298 |
|
299 |
# AUTO ENCODER
|
300 |
-
if str(config["auto_encoder"]).lower() != 'none' and str(config["auto_encoder"]).lower() != 'null':
|
301 |
pipeline.vae = AutoencoderKL.from_pretrained(config["auto_encoder"], torch_dtype=get_data_type(config["data_type"])).to(config["device"])
|
302 |
|
303 |
if str(config["enable_vae_slicing"]).lower() != 'false': pipeline.enable_vae_slicing()
|
@@ -472,7 +471,7 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
472 |
gr.Markdown("**VAE** stands for Variational Auto Encoders. An 'autoencoder' is an artificial neural network that is able to encode input data and decode to output data to bascially recreate the input. The VAE whereas adds a couple of additional layers of complexity to create new and unique output.")
|
473 |
with gr.Row():
|
474 |
with gr.Column():
|
475 |
-
in_auto_encoders = gr.Dropdown(value="
|
476 |
out_auto_encoder_description = gr.Textbox(value="", label="Description")
|
477 |
with gr.Column():
|
478 |
in_enable_vae_slicing = gr.Radio(label="Enable VAE slicing:", value=config.value["enable_vae_slicing"], choices=["True", "False"], info="decoding the batches of latents one image at a time, which may reduce memory usage, see https://huggingface.co/docs/diffusers/main/en/optimization/memory")
|
|
|
274 |
|
275 |
if str(config["model"]) != 'None' and str(config["model"]) != 'null' and str(config["model"]) != '' and str(config["scheduler"]) != 'None':
|
276 |
|
|
|
277 |
progress(1, desc="Initializing pipeline...")
|
278 |
|
279 |
torch.cuda.empty_cache()
|
|
|
296 |
if str(config["attention_slicing"]).lower() == 'true': pipeline.enable_attention_slicing()
|
297 |
|
298 |
# AUTO ENCODER
|
299 |
+
if str(config["auto_encoder"]).lower() != 'none' and str(config["auto_encoder"]).lower() != 'null' and str(config["auto_encoder"]).lower() != '':
|
300 |
pipeline.vae = AutoencoderKL.from_pretrained(config["auto_encoder"], torch_dtype=get_data_type(config["data_type"])).to(config["device"])
|
301 |
|
302 |
if str(config["enable_vae_slicing"]).lower() != 'false': pipeline.enable_vae_slicing()
|
|
|
471 |
gr.Markdown("**VAE** stands for Variational Auto Encoders. An 'autoencoder' is an artificial neural network that is able to encode input data and decode to output data to bascially recreate the input. The VAE whereas adds a couple of additional layers of complexity to create new and unique output.")
|
472 |
with gr.Row():
|
473 |
with gr.Column():
|
474 |
+
in_auto_encoders = gr.Dropdown(value="", choices=list(auto_encoders.keys()), label="Auto encoder", info="leave empty to not add an auto encoder")
|
475 |
out_auto_encoder_description = gr.Textbox(value="", label="Description")
|
476 |
with gr.Column():
|
477 |
in_enable_vae_slicing = gr.Radio(label="Enable VAE slicing:", value=config.value["enable_vae_slicing"], choices=["True", "False"], info="decoding the batches of latents one image at a time, which may reduce memory usage, see https://huggingface.co/docs/diffusers/main/en/optimization/memory")
|
appConfig.json
CHANGED
@@ -65,7 +65,6 @@
|
|
65 |
],
|
66 |
"refiners": ["stabilityai/stable-diffusion-xl-refiner-1.0"],
|
67 |
"auto_encoders": {
|
68 |
-
"None": "",
|
69 |
"stabilityai/sdxl-vae": "finetuned auto encoder for stable diffusion models, see https://huggingface.co/stabilityai/sdxl-vae",
|
70 |
"madebyollin/sdxl-vae-fp16-fix": "stable diffusion models encoder with fp16 precision, see https://huggingface.co/madebyollin/sdxl-vae-fp16-fix",
|
71 |
"stabilityai/sd-vae-ft-mse": "works best with CompVis/stable-diffusion-v1-4, see https://huggingface.co/stabilityai/sd-vae-ft-mse"
|
|
|
65 |
],
|
66 |
"refiners": ["stabilityai/stable-diffusion-xl-refiner-1.0"],
|
67 |
"auto_encoders": {
|
|
|
68 |
"stabilityai/sdxl-vae": "finetuned auto encoder for stable diffusion models, see https://huggingface.co/stabilityai/sdxl-vae",
|
69 |
"madebyollin/sdxl-vae-fp16-fix": "stable diffusion models encoder with fp16 precision, see https://huggingface.co/madebyollin/sdxl-vae-fp16-fix",
|
70 |
"stabilityai/sd-vae-ft-mse": "works best with CompVis/stable-diffusion-v1-4, see https://huggingface.co/stabilityai/sd-vae-ft-mse"
|
config.py
CHANGED
@@ -179,7 +179,7 @@ def assemble_code(str_config):
|
|
179 |
if str(config["cpu_offload"]).lower() != 'false': code.append("pipeline.enable_model_cpu_offload()")
|
180 |
|
181 |
# AUTO ENCODER
|
182 |
-
if str(config["auto_encoder"]).lower() != 'none':
|
183 |
code.append(f'pipeline.vae = AutoencoderKL.from_pretrained("{config["auto_encoder"]}", torch_dtype=data_type).to(device)')
|
184 |
|
185 |
if str(config["enable_vae_slicing"]).lower() != 'false': code.append("pipeline.enable_vae_slicing()")
|
|
|
179 |
if str(config["cpu_offload"]).lower() != 'false': code.append("pipeline.enable_model_cpu_offload()")
|
180 |
|
181 |
# AUTO ENCODER
|
182 |
+
if str(config["auto_encoder"]).lower() != 'none' and str(config["auto_encoder"]).lower() != 'null' and str(config["auto_encoder"]).lower() != '':
|
183 |
code.append(f'pipeline.vae = AutoencoderKL.from_pretrained("{config["auto_encoder"]}", torch_dtype=data_type).to(device)')
|
184 |
|
185 |
if str(config["enable_vae_slicing"]).lower() != 'false': code.append("pipeline.enable_vae_slicing()")
|