n42 commited on
Commit
84736d2
·
1 Parent(s): 75cc483

adding "null" to condition tests

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -32,7 +32,7 @@ def models_change(model, scheduler, config):
32
  trigger_token = ""
33
 
34
  # no model selected (because this is UI init run)
35
- if type(model) != list and str(model) != 'None':
36
 
37
  use_safetensors = str(models[model]['use_safetensors'])
38
  model_description = models[model]['description']
@@ -137,7 +137,7 @@ def requires_safety_checker_change(requires_safety_checker, config):
137
 
138
  def auto_encoders_change(auto_encoder, config):
139
 
140
- if str(auto_encoder) != 'None' and type(auto_encoder) != list:
141
 
142
  auto_encoder_description = auto_encoders[auto_encoder]
143
 
@@ -150,7 +150,7 @@ def auto_encoders_change(auto_encoder, config):
150
 
151
  def schedulers_change(scheduler, config):
152
 
153
- if str(scheduler) != 'None' and type(scheduler) != list:
154
 
155
  scheduler_description = schedulers[scheduler]
156
 
@@ -163,7 +163,7 @@ def schedulers_change(scheduler, config):
163
 
164
  def adapters_textual_inversion_change(adapter_textual_inversion, config):
165
 
166
- if str(adapter_textual_inversion) != 'None' and type(adapter_textual_inversion) != list:
167
 
168
  adapter_textual_inversion_description = adapters['textual_inversion'][adapter_textual_inversion]['description']
169
  in_adapters_textual_inversion_token = adapters['textual_inversion'][adapter_textual_inversion]['token']
@@ -187,7 +187,7 @@ def run_inference(config, config_history, progress=gr.Progress(track_tqdm=True))
187
  # str_config = str_config.replace("'", '"').replace('None', 'null').replace('False', 'false')
188
  # config = json.loads(str_config)
189
 
190
- if str(config["model"]) != 'None' and str(config["scheduler"]) != 'None':
191
 
192
  progress((1,3), desc="Preparing pipeline initialization...")
193
 
@@ -206,14 +206,14 @@ def run_inference(config, config_history, progress=gr.Progress(track_tqdm=True))
206
  pipeline.enable_model_cpu_offload()
207
 
208
  # AUTO ENCODER
209
- if str(config["auto_encoder"]).lower() != 'none':
210
  pipeline.vae = AutoencoderKL.from_pretrained(config["auto_encoder"], torch_dtype=get_data_type(config["data_type"])).to(config["device"])
211
 
212
  if str(config["enable_vae_slicing"]).lower() != 'false': pipeline.enable_vae_slicing()
213
  if str(config["enable_vae_tiling"]).lower() != 'false': pipeline.enable_vae_tiling()
214
 
215
  # INIT REFINER
216
- if config['refiner'].lower() != 'none':
217
  refiner = DiffusionPipeline.from_pretrained(
218
  config['refiner'],
219
  text_encoder_2=pipeline.text_encoder_2,
@@ -243,7 +243,7 @@ def run_inference(config, config_history, progress=gr.Progress(track_tqdm=True))
243
 
244
  # ADAPTERS
245
  # TEXTUAL INVERSION
246
- if str(config["adapter_textual_inversion"]).lower() != 'none':
247
  pipeline.load_textual_inversion(config["adapter_textual_inversion"], token=config["adapter_textual_inversion_token"])
248
 
249
  progress((3,3), desc="Creating the result...")
@@ -257,7 +257,7 @@ def run_inference(config, config_history, progress=gr.Progress(track_tqdm=True))
257
  num_inference_steps = int(config["inference_steps"]),
258
  guidance_scale = float(config["guidance_scale"])).images
259
 
260
- if config['refiner'].lower() != 'none':
261
  image = refiner(
262
  prompt = prompt,
263
  num_inference_steps = int(config["inference_steps"]),
 
32
  trigger_token = ""
33
 
34
  # no model selected (because this is UI init run)
35
+ if type(model) != list and str(model) != 'None' and str(model) != 'null':
36
 
37
  use_safetensors = str(models[model]['use_safetensors'])
38
  model_description = models[model]['description']
 
137
 
138
  def auto_encoders_change(auto_encoder, config):
139
 
140
+ if str(auto_encoder) != 'None' and str(auto_encoder) != 'null' and type(auto_encoder) != list:
141
 
142
  auto_encoder_description = auto_encoders[auto_encoder]
143
 
 
150
 
151
  def schedulers_change(scheduler, config):
152
 
153
+ if str(scheduler) != 'None' and str(scheduler) != 'null' and type(scheduler) != list:
154
 
155
  scheduler_description = schedulers[scheduler]
156
 
 
163
 
164
  def adapters_textual_inversion_change(adapter_textual_inversion, config):
165
 
166
+ if str(adapter_textual_inversion) != 'None' and str(adapter_textual_inversion) != 'null' and type(adapter_textual_inversion) != list:
167
 
168
  adapter_textual_inversion_description = adapters['textual_inversion'][adapter_textual_inversion]['description']
169
  in_adapters_textual_inversion_token = adapters['textual_inversion'][adapter_textual_inversion]['token']
 
187
  # str_config = str_config.replace("'", '"').replace('None', 'null').replace('False', 'false')
188
  # config = json.loads(str_config)
189
 
190
+ if str(config["model"]) != 'None' and str(config["model"]) != 'null' and str(config["scheduler"]) != 'None':
191
 
192
  progress((1,3), desc="Preparing pipeline initialization...")
193
 
 
206
  pipeline.enable_model_cpu_offload()
207
 
208
  # AUTO ENCODER
209
+ if str(config["auto_encoder"]).lower() != 'none' and str(config["auto_encoder"]).lower() != 'null':
210
  pipeline.vae = AutoencoderKL.from_pretrained(config["auto_encoder"], torch_dtype=get_data_type(config["data_type"])).to(config["device"])
211
 
212
  if str(config["enable_vae_slicing"]).lower() != 'false': pipeline.enable_vae_slicing()
213
  if str(config["enable_vae_tiling"]).lower() != 'false': pipeline.enable_vae_tiling()
214
 
215
  # INIT REFINER
216
+ if str(config['refiner']).lower() != 'none' and str(config['refiner']).lower() != 'null':
217
  refiner = DiffusionPipeline.from_pretrained(
218
  config['refiner'],
219
  text_encoder_2=pipeline.text_encoder_2,
 
243
 
244
  # ADAPTERS
245
  # TEXTUAL INVERSION
246
+ if str(config["adapter_textual_inversion"]).lower() != 'none' and str(config["adapter_textual_inversion"]).lower() != 'null':
247
  pipeline.load_textual_inversion(config["adapter_textual_inversion"], token=config["adapter_textual_inversion_token"])
248
 
249
  progress((3,3), desc="Creating the result...")
 
257
  num_inference_steps = int(config["inference_steps"]),
258
  guidance_scale = float(config["guidance_scale"])).images
259
 
260
+ if config['refiner'].lower() != 'none' and config['refiner'].lower() != 'null':
261
  image = refiner(
262
  prompt = prompt,
263
  num_inference_steps = int(config["inference_steps"]),