File size: 4,165 Bytes
8faed94 9e32a30 8a4876a 191ea97 9e32a30 beaf001 83901f1 9e32a30 8faed94 9e32a30 83901f1 0ebbdd8 83901f1 17284b0 9f5c507 17284b0 8faed94 17284b0 cda0ab7 0ebbdd8 83901f1 191ea97 83901f1 2ae2578 e95f622 738703f 9e32a30 83901f1 9e32a30 191ea97 1bc9f68 191ea97 83901f1 9e32a30 eadb51f 191ea97 9e32a30 191ea97 9e32a30 191ea97 111ab69 17284b0 9e32a30 17284b0 9e32a30 191ea97 9e32a30 191ea97 9e32a30 7c0e7d7 9e32a30 191ea97 9e32a30 83901f1 9e32a30 191ea97 9e32a30 191ea97 9e32a30 191ea97 9e32a30 8a4876a 9e32a30 191ea97 9e32a30 8a4876a 9e32a30 191ea97 9e32a30 0ebbdd8 9e32a30 0ebbdd8 9e32a30 191ea97 9e32a30 0ebbdd8 9e32a30 0ebbdd8 9e32a30 0d6069a 191ea97 738703f 191ea97 9e32a30 1bc9f68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
import cv2
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
#pipe = StableDiffusionXLPipeline.from_pretrained(
# "yodayo-ai/holodayo-xl-2.1",
# vae=vae,
# torch_dtype=torch.float16,
#)
pipe = StableDiffusionXLPipeline.from_pretrained(
"yodayo-ai/clandestine-xl-1.0",
torch_dtype=torch.float16,
use_safetensors=True,
custom_pipeline="lpw_stable_diffusion_xl",
add_watermarker=False #,
#variant="fp16"
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
output_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return output_image
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# Text-to-Image Demo
using [clandestine XL 1.0](https://huggingface.co/yodayo-ai/clandestine-xl-1.0)
""")
#yodayo-ai/clandestine-xl-1.0
#yodayo-ai/holodayo-xl-2.1
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,#832,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,#1216,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=28,
step=1,
value=28,
)
run_button.click(#lambda x: None, inputs=None, outputs=result).then(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.queue().launch()
|