File size: 4,165 Bytes
8faed94
9e32a30
 
8a4876a
191ea97
9e32a30
beaf001
83901f1
 
9e32a30
8faed94
9e32a30
83901f1
0ebbdd8
83901f1
 
17284b0
 
 
 
 
9f5c507
17284b0
 
8faed94
17284b0
cda0ab7
 
0ebbdd8
83901f1
191ea97
83901f1
 
 
 
 
2ae2578
e95f622
738703f
9e32a30
 
 
83901f1
9e32a30
191ea97
1bc9f68
 
 
 
 
 
 
 
 
191ea97
83901f1
9e32a30
eadb51f
191ea97
9e32a30
 
 
 
 
 
 
191ea97
9e32a30
191ea97
111ab69
17284b0
9e32a30
17284b0
 
9e32a30
 
 
 
 
 
 
 
191ea97
9e32a30
191ea97
9e32a30
7c0e7d7
9e32a30
191ea97
9e32a30
 
 
 
83901f1
9e32a30
191ea97
9e32a30
 
 
 
 
 
 
191ea97
9e32a30
191ea97
9e32a30
 
 
 
 
 
8a4876a
9e32a30
191ea97
9e32a30
 
 
 
 
8a4876a
9e32a30
191ea97
9e32a30
 
 
 
0ebbdd8
9e32a30
0ebbdd8
9e32a30
191ea97
9e32a30
 
 
0ebbdd8
9e32a30
0ebbdd8
9e32a30
 
0d6069a
191ea97
738703f
191ea97
9e32a30
 
1bc9f68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
import cv2
import torch


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

#pipe = StableDiffusionXLPipeline.from_pretrained(
#    "yodayo-ai/holodayo-xl-2.1",
#    vae=vae,
#    torch_dtype=torch.float16,
#)
pipe = StableDiffusionXLPipeline.from_pretrained(
    "yodayo-ai/clandestine-xl-1.0", 
    torch_dtype=torch.float16, 
    use_safetensors=True,
    custom_pipeline="lpw_stable_diffusion_xl",
    add_watermarker=False #,
    #variant="fp16"
)

pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216

    
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    output_image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator
    ).images[0]

    return output_image


css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # Text-to-Image Demo
        using [clandestine XL 1.0](https://huggingface.co/yodayo-ai/clandestine-xl-1.0)
        """)
        #yodayo-ai/clandestine-xl-1.0 
        #yodayo-ai/holodayo-xl-2.1
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):

            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,#832,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,#1216,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=7,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=28,
                    step=1,
                    value=28,
                )

    run_button.click(#lambda x: None, inputs=None, outputs=result).then(
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result]
    )

demo.queue().launch()