el-el-san commited on
Commit
0ebbdd8
·
verified ·
1 Parent(s): e95f622

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -10
app.py CHANGED
@@ -2,15 +2,30 @@
2
  import gradio as gr
3
  import numpy as np
4
  import random
5
- from diffusers import DiffusionPipeline
 
6
  import torch
7
  import spaces
8
 
9
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
10
- pipe = pipe.to("cuda")
11
 
12
  MAX_SEED = np.iinfo(np.int32).max
13
- MAX_IMAGE_SIZE = 1024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  @spaces.GPU
16
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
@@ -86,7 +101,7 @@ with gr.Blocks(css=css) as demo:
86
  minimum=256,
87
  maximum=MAX_IMAGE_SIZE,
88
  step=32,
89
- value=512,
90
  )
91
 
92
  height = gr.Slider(
@@ -94,7 +109,7 @@ with gr.Blocks(css=css) as demo:
94
  minimum=256,
95
  maximum=MAX_IMAGE_SIZE,
96
  step=32,
97
- value=512,
98
  )
99
 
100
  with gr.Row():
@@ -102,17 +117,17 @@ with gr.Blocks(css=css) as demo:
102
  guidance_scale = gr.Slider(
103
  label="Guidance scale",
104
  minimum=0.0,
105
- maximum=10.0,
106
  step=0.1,
107
- value=0.0,
108
  )
109
 
110
  num_inference_steps = gr.Slider(
111
  label="Number of inference steps",
112
  minimum=1,
113
- maximum=12,
114
  step=1,
115
- value=2,
116
  )
117
 
118
  run_button.click(
 
2
  import gradio as gr
3
  import numpy as np
4
  import random
5
+ #from diffusers import DiffusionPipeline
6
+ from diffusers import StableDiffusionXLPipeline
7
  import torch
8
  import spaces
9
 
 
 
10
 
11
  MAX_SEED = np.iinfo(np.int32).max
12
+ MAX_IMAGE_SIZE = 1216
13
+
14
+ #pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
15
+ #pipe = pipe.to("cuda")
16
+
17
+ pipe = StableDiffusionXLPipeline.from_pretrained(
18
+ "yodayo-ai/holodayo-xl-2.1",
19
+ torch_dtype=torch.float16,
20
+ use_safetensors=True,
21
+ custom_pipeline="lpw_stable_diffusion_xl",
22
+ add_watermarker=False,
23
+ variant="fp16"
24
+ )
25
+ pipe.to('cuda')
26
+
27
+ prompt = "1girl, solo, upper body, v, smile, looking at viewer, outdoors, night, masterpiece, best quality, very aesthetic, absurdres"
28
+ negative_prompt = "nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
29
 
30
  @spaces.GPU
31
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
101
  minimum=256,
102
  maximum=MAX_IMAGE_SIZE,
103
  step=32,
104
+ value=832,
105
  )
106
 
107
  height = gr.Slider(
 
109
  minimum=256,
110
  maximum=MAX_IMAGE_SIZE,
111
  step=32,
112
+ value=1216,
113
  )
114
 
115
  with gr.Row():
 
117
  guidance_scale = gr.Slider(
118
  label="Guidance scale",
119
  minimum=0.0,
120
+ maximum=20.0,
121
  step=0.1,
122
+ value=7,
123
  )
124
 
125
  num_inference_steps = gr.Slider(
126
  label="Number of inference steps",
127
  minimum=1,
128
+ maximum=28,
129
  step=1,
130
+ value=28,
131
  )
132
 
133
  run_button.click(