el-el-san commited on
Commit
e95f622
1 Parent(s): 672f255

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -28
app.py CHANGED
@@ -1,23 +1,18 @@
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
  from diffusers import DiffusionPipeline
5
  import torch
 
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
-
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 1024
20
 
 
21
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
 
23
  if randomize_seed:
@@ -37,12 +32,6 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
37
 
38
  return image
39
 
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
-
46
  css="""
47
  #col-container {
48
  margin: 0 auto;
@@ -50,17 +39,11 @@ css="""
50
  }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
  with gr.Blocks(css=css) as demo:
59
 
60
  with gr.Column(elem_id="col-container"):
61
  gr.Markdown(f"""
62
  # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
  """)
65
 
66
  with gr.Row():
@@ -131,11 +114,6 @@ with gr.Blocks(css=css) as demo:
131
  step=1,
132
  value=2,
133
  )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
 
140
  run_button.click(
141
  fn = infer,
@@ -143,4 +121,4 @@ with gr.Blocks(css=css) as demo:
143
  outputs = [result]
144
  )
145
 
146
- demo.queue().launch()
 
1
+ #Lisence: Apache 2.0
2
  import gradio as gr
3
  import numpy as np
4
  import random
5
  from diffusers import DiffusionPipeline
6
  import torch
7
+ import spaces
8
 
9
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
10
+ pipe = pipe.to("cuda")
 
 
 
 
 
 
 
 
11
 
12
  MAX_SEED = np.iinfo(np.int32).max
13
  MAX_IMAGE_SIZE = 1024
14
 
15
+ @spaces.GPU
16
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
17
 
18
  if randomize_seed:
 
32
 
33
  return image
34
 
 
 
 
 
 
 
35
  css="""
36
  #col-container {
37
  margin: 0 auto;
 
39
  }
40
  """
41
 
 
 
 
 
 
42
  with gr.Blocks(css=css) as demo:
43
 
44
  with gr.Column(elem_id="col-container"):
45
  gr.Markdown(f"""
46
  # Text-to-Image Gradio Template
 
47
  """)
48
 
49
  with gr.Row():
 
114
  step=1,
115
  value=2,
116
  )
 
 
 
 
 
117
 
118
  run_button.click(
119
  fn = infer,
 
121
  outputs = [result]
122
  )
123
 
124
+ demo.queue().launch()